Table of contents

1

Methodologies for the synthesis of β-carbolines

Siobhan Boswood, Stefan Roesner

- 1. Introduction
- 2. Oxidation of tetrahydro- and dihydro-β-carbolines
- 3. Methodologies that generate the pyridine ring
- 3.1. Pictet-Spengler reaction
- 3.2. Bischler-Napieralski reaction
- 3.3. Condensation reactions
- 3.4. Iminoannulation reactions
- 3.5 Palladium-catalyzed reactions
- 3.6. Other transition metal-catalyzed reactions
- 3.7. Miscellaneous reactions
- 4. Methodologies that generate the central pyrrole ring
- 4.1. Palladium-catalyzed procedures
- 4.2. Miscellaneous procedures that generate the pyrrole ring
- 5. Cascade reactions that generate the pyrrole as well as the pyridine ring
- 5.1. Transition metal-catalyzed cycloadditions
- 5.2. Other cascade sequences
- 6. Conclusions
- Acknowledgements
- References

Heterocyclic α-oxoesters (hetaryl glyoxylates): synthesis and chemical transformations. Part 2. 23

Bohdan V. Vashchenko, Oleksandr Geraschenko, Oleksandr O. Grygorenko

- 1. Introduction
- 2. Synthesis of 1,2-azolyl glyoxylates and their fused analogs
- 3. Chemical transformations of 1,2-azolyl glyoxylates and their fused analogs
- 4. Synthesis of 1,3-azolyl glyoxylates and their fused analogs
- 5. Chemical transformations of 1,3-azolyl glyoxylates and their fused analogs
- 5.1. Functional group interconversions
- 5.2. Heterocyclizations
- 6. Synthesis and chemical transformations of triazolyl glyoxylates
- 7. Synthesis of azine-derived glyoxylates
- 8. Chemical transformations of azine-derived glyoxylates
- 9. Conclusions
- Acknowledgement

References

Azanaphthoquinones: privileged scaffolds in nature. Biological activities, synthesis, and 51 regioselective reactions

Paulo C. M. L. Miranda, Nelson H. Morgon, Joaquim A. M. Castro, Alan R. S. Davide, Lucas C. Santana, Caio M. Porto

1. Introduction

- 2. Azanaphthoquinones bearing substituents at positions 1 or 2
- 3. Azanaphthoquinones bearing substituents at positions 3 or 4
- 4. Azanaphthoquinones bearing substituents at positions 6 or 7
- 5. Theoretical aspects for regioselectivity of the nucleophilic attack at azanaphthoquinones
- 6. Conclusion
- Acknowledgments
- References

Cyclization of alkynes under metal-free conditions: synthesis of indoles

Roberto do Carmo Pinheiro, Gilson Zeni

- 1. Introduction
- 2. Synthesis of indoles via electrochemical-mediated cyclization of alkynes
- 3. Synthesis of indoles via oxidative nucleophilic cyclization of alkynes
- 4. Synthesis of indoles via cyclization of alkynes promoted by microwave irradiation
- 5. Synthesis of indoles via radical-promoted cyclization of alkynes
- 6. Synthesis of indoles *via* base-promoted cyclization of alkynes
- 7. Synthesis of indoles via nucleophilic cyclization of alkynes promoted by electrophiles
- 8. Miscellaneous strategies
- 9. Conclusion
- Acknowledgements

References

Synthesis and heterocyclizations of *ortho*-amino(alkynyl)naphthalenes

- Anna V. Gulevskaya, Ekaterina A. Filatova
- 1. Introduction
- 2. Synthesis of ortho-amino(alkynyl)naphthalenes
- 2.1. Synthesis 2-alkynylnaphthalen-1-amines
- 2.2. Synthesis of 1-alkynylnaphthalen-2-amines
- 2.3. Synthesis of 3-alkynylnaphthalen-2-amines
- 3. Heterocyclizations of ortho-amino(alkynyl)naphthalenes
- 3.1. Heterocyclizations of 2-alkynylnaphthalen-1-amines
- 3.2. Heterocyclizations of 1-alkynylnaphthalen-2-amines
- 3.3. Heterocyclizations of 3-alkynylnaphthalen-2-amines
- 4. Conclusions

References

Construction of substituted 2-pyrazolines

- Yi-Kang Zhang, Peng An
- 1. Introduction
- 2. Reactions between hydrazines and α , β -unsaturated enones
- 3. Intramolecular amination of β , γ -unsaturated hydrazones
- 4. 1,3-Dipolar cycloaddition between nitrile imine and alkenes
- 5. Through Huisgen zwitterions
- 6. Other methods
- 7. Conclusion

Acknowledgment References

Visible-light-induced synthesis of phosphorylated compounds

Fan Gao, Bing Yu

- 1. Introduction
- 2. Visible-light-induced synthesis in homogeneous systems
- 2.1. Phosphorylation reactions catalyzed by transition metal complex photocatalysts
- 2.2. Phosphorylation reactions catalyzed by metal-free organic photocatalysts
- 2.3. Phosphorylation reactions in photocatalyst-free conditions
- 3. Visible-light-induced synthesis in heterogeneous systems
- 4. Conclusions
- Acknowledgment
- References

116

65

82

134

Recent progress on atropenantioselective synthesis of axially chiral pyrroles	151
Yu-Jing Xi, Xiao-Ming Zhao, Sheng-Cai Zheng	
1. Introduction	
2. Axially chiral pyrroles bearing stereogenic axis at N1-position	
2.1. "De novo ring formation" strategy	
2.2. "Desymmetrization" strategy	
2.3. "(Dynamic) kinetic resolution" strategy	
3. Axially chiral pyrroles bearing stereogenic axis at C2-position	
3.1. "De novo ring formation" strategy	
3.2. "Central-to-axial chirality " strategy	
4. Axially chiral pyrroles bearing stereogenic axis at C3-position	
4.1. " <i>De novo</i> ring formation" strategy	
4.2. "Kinetic resolution" strategy	
4.3. "Central-to-axial chirality" strategy	
5. Conclusion	
Acknowledgement	
References	
Desent advances in actalytic asymmetric synthesis of shinel pyriding derivatives	164
Recent advances in catalytic asymmetric synthesis of chiral pyridine derivatives <i>Huilong Zhu, Xiaowei Dou</i>	104
1. Introduction	
2. Catalytic asymmetric addition to unsaturated double bonds	
3. Catalytic asymmetric reduction	
4. Catalytic asymmetric cross-coupling	
5. Catalytic asymmetric C–H functionalization	
6. Miscellaneous reactions	
7. Conclusion	
Acknowledgement	
References	
Synthesis of dimeric aryls and heteroaryls through dimerization	180
Hai-Lei Cui	
1. Introduction	
2. Formation of aryl-aryl bond	
3. Formation of heteroaryl-heteroaryl bond	
4. Conclusion	
Acknowledgement	
References	
	202
Recent advances in electrochemical synthesis of diversified functionalized	202
spiro[n.5]enone derivatives	
Ju Wu, Yufen Zhao	
1. Introduction	
2. Electrochemical synthesis of functionalized spiro[4.5]dienone derivatives	
3. Electrochemical synthesis of functionalized spiro[4.5]trienone derivatives	
4. Electrochemical synthesis of functionalized spiro[5.5]trienone derivatives	
5. Conclusion	
Acknowledgment References	
NEIEIEIIUES	

- 1. Introduction
- 2. Synthesis of 3-acylated benzoheteroles
 - 2.1. Cycloannulation of 1,6-enynes
 - 2.2. Cycloannulation through acyl group migration
 - 2.3. Cycloannulation through C-H functionalization
 - 2.4. Oxidative cycloannulations
- 3. Construction of 3-sulfonyl benzoheteroles
 - 3.1. Sulfonylative-cycloannulation using sodium sulfinates
 - 3.2. Sulfonylative-cycloannulation using other sulfonyl sources
 - 3.3. Sulfonylative-cycloannulation through three component coupling reactions
 - 3.4. Miscellaneous cycloannulations
- 4. Synthesis of 3-vinyl benzoheteroles
 - 4.1. Cycloannulation through alkenyl group migration
 - 4.2. Alkenylative-cycloannulations
 - 4.3. Miscellaneous
- 5. Conclusions
- Acknowledgement

References

Synthetic approaches to 4-aryl-3,4-dihydrocoumarins

- Sandhya Singh Yadav, Jyoti Sharma, Sagar B. Khandekar, Rodney A. Fernandes
- 1. Introduction
- 2. Metal-free approaches
- 2.1. Zeolites
- 2.2. Protic acids
- 2.3. Solid acids
- 2.4. Lewis acids
- 2.5. Other metal-free catalysts
- 3. Transition metal-mediated or -catalysed approaches
- 3.1. Iron-mediated or -catalyzed methods
- 3.2. Copper-catalyzed method
- 3.3. Rhodium-catalyzed methods
- 3.4. Palladium-catalyzed methods
- 4. Organocatalysis approaches
- 5. Conclusions and outlook
- Acknowledgement

References

<u>Realistic catalysts for the cycloaddition of CO₂ to epoxides under ambient conditions</u> to generate cyclic organic carbonates: the case of coordination compounds and naturally available hydrogen bond donors

Tanika Kessaratikoon, Suthida Kaewsai, Valerio D'Elia

- 1. Introduction
- 2. Cycloaddition of CO2 to epoxides catalyzed by coordination compounds
- 2.1. Homogeneous coordination compounds
- 2.2. Surface-supported coordination compounds
- 3. Cycloaddition of CO₂ to epoxides catalyzed by biobased H-bond donors
- 3.2. Recyclable biobased H-bond donors
- 4. Conclusions and outlook
- Acknowledgements

References

254

282

Metal-catalyzed borylative cyclization reactions of polynsaturated substrates for the synthesis 309 of heterocycles

- Inés Manjón-Mata, M. Teresa Quirós
- 1. Introduction
- 2. Borylative cyclization reactions of dienes
- 2.1 Rhodium-catalyzed borylative cyclizations
- 2.2 Copper-catalyzed borylative cyclizations
- 2.3 Palladium-catalyzed borylative cyclizations
- 3. Borylative cyclization reactions of enynes
 - 3.1 Rhodium-catalyzed borylative cyclizations
 - 3.2 Palladium-catalyzed borylative cyclizations
 - 3.3 Ruthenium-catalyzed borylative cyclizations
- 3.4 Gold-catalyzed borylative cyclizations
- 3.5 Iron-catalyzed borylative cyclizations
- 3.6 Cobalt-catalyzed borylative cyclizations
- 3.7 Nickel-catalyzed borylative cyclizations
- 3.8 Copper-catalyzed borylative cyclizations
- 4. Borylative cyclization reactions of diynes
- 4.1 Cobalt-catalyzed borylative cyclizations
- 4.2 Copper-catalyzed borylative cyclizations
- 5. Borylative cyclization reactions of allenynes and enallenes
- 5.1 Palladium-catalyzed borylative cyclizations
- 5.2 Nickel-catalyzed borylative cyclizations
- 6. Borylative cyclization reactions of bisallenes
- 6.1 Palladium-catalyzed borylative cyclizations
- 7. Diborylative cyclization reactions
 - 7.1. Palladium-catalyzed diborylative cyclization of dienes
 - 7.2. Nickel-catalyzed diborylative cyclization of enynes
- 8. Conclusions
- Acknowledgements
- References

Synthesis of benzo[*b*]**furan derivatives by transition metal-catalyzed heterocyclizations** 341 of 2-ethynylphenols

Rubén Miguélez, Omar Arto, José Manuel González, Pablo Barrio

- 1. Introduction
- 2. Heterocyclization employing gold-catalysis
- 3. Heterocyclization employing other transition metal-catalysis
- 4. Conclusions
- Acknowledgements

References

Synthesis and application of diaza[5]helicenes

Marina Degač, Martin Kotora

1. Introduction

- 2. Symmetric *m*,*n*-diaza[5]helicene
- 2.1. List of symmetric *m*,*n*-diaza[5]helicenes
- 2.2. 1,14-Diaza[5]helicenes (benzo[1,2-*h*:4,3-*h*']diquinolines)
- 2.2.1. Synthesis
- 2.2.2. Properties and application
- 2.3. 2,13-Diaza[5]helicenes (benzo[1,2-*h*:4,3-*h*]diisoquinolines)
- 2.3.1. Synthesis

360

- 2.3.2. Properties and application
- 2.4. 3,12-Diaza[5]helicenes (benzo[2,1-*f*:3,4-*f*⁷]diisoquinolines)
- 2.4.1. Synthesis
- 2.5. 4,11-Diaza[5]helicenes (benzo[2,1-f:3,4-f^{*}]diquinolines)
- 2.5.1. Synthesis
- 2.5.2. Properties and application
- 2.6. 5,10-Diaza[5]helicenes (dibenzo[*a*,*k*][3,8]phenanthrolines)
 - 2.6.1. Synthesis
- 2.6.2. Properties and application
- 2.7. 6,9-Diaza[5]helicenes (dibenzo[*a*,*k*][4,7]phenanthrolines)
 - 2.7.1. Synthesis
- 2.7.2. Properties and application
- 2.8. 7,8-Diaza[5]helicenes (benzo[*f*]naphtho[2,1-c]cinnolines)
 - 2.8.1. Synthesis
- 2.8.2. Properties and application
- 3. Unsymmetric *m*,*n*-diaza[5]helicenes
- 3.1. List of unsymmetric *m*,*n*-diaza[5]helicenes
- 3.2. Synthesized unsymmetric *m*,*n*-diaza[5]helicenes
 - 3.2.1. Synthesis
- 3.2.2. Properties and application
- 3.3. Other unsymmetric *m*,*n*-diaza[5]helicenes
- 4. Selected physical properties of *m*,*n*-diaza[5]helicenes
- 4.1. X-ray data
- 5. Conclusion and perspectives
- References

Recent developments in C-H functionalization of carbazoles

Srinivasarao Arulananda Babu, Ramandeep Kaur, Harcharan Singh, Amit Kumar

- 1. Introduction
- 2. Synthesis of alkylated carbazoles via C-H alkylation
- 2.1. C1 Alkylation
- 2.2. C2 Alkylation
- 2.3. C3 Alkylation
- 2.4. C4 Alkylation
- 3. Synthesis of C-H arylated carbazoles via C-H arylation
- 4. Synthesis of C-H alkenylated, alkynylated, and allylated carbazoles
- 4.1. C1 Alkenylation/alkynylation/allylation
- 5. C-H Acylation, acetoxylation, cyanation, borylation, halogenation, perfluoroalkylation, chalcogenation, amidation/amination, *N*-carbazolation of carbazole
- 5.1. C1 Acylation, acetoxylation, cyanation, and amidation reactions
- 5.2. C-H Chalcogenation of carbazole
- 5.3. C-H Borylation, halogenation, perfluoroalkylation, and N-carbazolation of carbazole
- 6. Oxidative cross-coupling with carbazole
- 7. Intramolecular C-H cyclization involving carbazole
- 8. Annulation reaction involving C-H bond of carbazole towards modified carbazole
- 9. C-H Functionalization of tetrahydrocarbazole
- 10. C-H Deuteration in carbazole
- 11. Miscellaneous reactions involving C-H functionalization of carbazoles
- 12. Conclusion
- References

<u>378</u>

The tambjamines: pyrrolylpyrromethene-containing alkaloids with diverse biological profiles 425

Liangguang Yi, Martin G. Banwell, Ping Lan, Claudia Pessoa

- 1. Introduction
- 2. Isolation, structural elucidation, ecological roles and distribution of the producing organisms
- 3. Biogenesis
- 4. Biological and related activities
- 5. Total syntheses of the tambjamines
- 6. Synthesis of analogues and their biological profiles
- 7. Prospects for the development of the tambjamines as therapeutic agents
- 8. Conclusions
- Acknowledgements

References and notes

Syntheses of fluorine-containing heterocyclic compounds *via* direct and indirect methods using <u>443</u> <u>difluorocarbenes</u>

Kohei Fuchibe, Junji Ichikawa

1. Introduction

- 2. Syntheses using difluorocarbenes: direct methods
- 2.1. Synthesis of difluoromethoxy- and difluoromethylsulfanyl-substituted pyridine, oxazole, and pyran derivatives *via* difluoromethylation
- 2.2. Synthesis of (di)fluorothiazoline, (di)fluorooxazoline, and (di)fluoropyrroline derivatives *via* [4+1]-annulation
- 2.3. Synthesis of fluorothienothiophenes and fluorothienofurans via abnormal [4+1]-annulation
- 3. Syntheses starting from fluorinated cyclopropanes: indirect methods
- 3.1. Synthesis of (di)fluorothiophene derivatives via single activation of the trifluoromethyl group
- 3.2. Synthesis of (difluoroethyl)benzoxazines via regioselective three-membered ring opening
- 4. Conclusions
- Acknowledgements

References