Table of Contents

Preparation of biomedically interesting heterocycles starting from oxiranic compounds
Florenci V. González, Lledó Bou-Iserste 1
1. Introduction
2. Synthesis of nitrogen heterocycles starting from nitroepoxides
3. Synthesis of thiazoles, piperidones and quinoxalines starting from cyanoepoxides
4. Synthesis of morpholines starting from epoxides
5. Synthesis of quinoxalines, tetrahydroquinazolines and pyrazines starting from epoxides
6. Synthesis of azetidines starting from epoxides
7. Synthesis of piperidines and pyrrolidines from azidoepoxides
8. Synthesis of heterocycles starting from epoxides and epoxyketones
9. Other reactions involving synthesis of heterocycles from oxiranic compounds
10. Conclusion
Acknowledgement
References

Photocatalyzed preparation of oxygenated heterocycles
Stefano Crespi, Stefano Protti, Paolo Quadrelli, Maurizio Fagnoni, Davide Ravelli 17
1. Introduction
2. Three- and four-membered rings
3. Five-membered rings
3.1. Tetrahydrofurans and dihydrobenzofurans
3.2. γ-Lactones and butenolides
3.3. Furans and benzo furans
4. Six-membered rings
4.1. Chroman derivatives
4.2. δ-Lactones and coumarins
4.3. Other oxygen heterocycles
5. Larger than six-membered rings
6. Conclusions
Acknowledgements
References

Recent advances in the PdI$_2$-catalyzed carboxylative synthesis of heterocycles from acetylenic substrates: a personal account
Bartolo Gabriele 41
1. Introduction
2. PdI$_2$-catalyzed oxidative heterocyclization-alkoxy carbonylation
3. PdI$_2$-catalyzed oxidative aminocarbonylation-heterocyclization
4. PdI$_2$-catalyzed non-oxidative carbonylations
5. Conclusion
Acknowledgement
References

Recent advances in metal-catalyzed C-H functionalization of pyrimidinones, quinazolinones and fused quinazolinones
Corinne Fruit, Thierry Besson 56
1. Introduction
2. Metal-catalyzed C-H functionalization of pyrimidinones
2.1. Intramolecular palladium-catalyzed C-H arylation of protected uracils using aryl halides
2.2. Intermolecular metal-catalyzed C-H arylation of protected uracils
2.3. Metal-catalyzed dehydrogenative cross-coupling of pyrimidinones with (hetero)arenes
2.4. Palladium-catalyzed dehydrogenative alkenylation of uracils
2.5. Miscellaneous functionalization of uracils and pyrimidinone
3. Metal-catalyzed C-H functionalization of quinazolinones
4. Metal-catalyzed C-H functionalization of 2-arylquinazolinones
5. Metal-catalyzed C-H functionalization of fused quinazolinones
6. Conclusion
Acknowledgments
Abbreviations
References

Andreas S. Kalogirou, Panayiotis A. Koutentis

1. Introduction
2. Theoretical methods
3. Experimental structural methods
3.1. X-Ray diffraction
3.2. NMR spectroscopy
3.3. UV/vis spectroscopy
3.4. Infrared and Raman spectroscopy
3.5. Mass spectrometry
4. Thermodynamic aspects
4.1. Physical properties
4.2. Aromaticity
5. 1,2,6-Thiadiazine ring synthesis
5.1. Synthesis of monocyclic 4H-1,2,6-thiadiazines
5.2. Synthesis of polycyclic 4H-1,2,6-thiadiazines by building of the thiadiazine ring
5.2.2. Synthesis of polycyclic 4H-1,2,6-thiadiazines by fusion onto the thiadiazine ring
6. Chemistry of 1,2,6-thiadiazines
6.1. Functional group interconversions at the C4 position of monocyclic 4H-1,2,6-thiadiazines
6.1.1. Conversion to 2-(3,5-dichloro-4H-1,2,6-thiadiazin-4-ylidene)malononitrile
6.1.2. Conversion to 4H-1,2,6-thiadiazin-4-imines
6.1.3. Conversion to 3,5-dichloro-4H-1,2,6-thiadiazin-4-one
6.1.4. Conversion to ketals and thioketals
6.1.5. Other conversions
6.1.6. Interconversions of 4H-1,2,6-thiadiazin-4-thiones
6.2. Functional group interconversions at the C4 position of polycyclic 4H-1,2,6-thiadiazines
6.3. Displacement of C3/5 chlorides by nucleophiles on monocyclic 4H-1,2,6-thiadiazines
6.3.1. Chloride displacements of 4H-1,2,6-thiadiazin-4-ones
6.3.2. Chloride displacements of 4H-1,2,6-thiadiazin-4-imines
6.3.3. Chloride displacements of 2-(4H-1,2,6-thiadiazin-4-ylidene)malononitriles
6.3.4. Chloride displacements of thiadiazine-4-ketals
6.4. Displacement of C3/5 chlorides by nucleophiles on polycyclic 4H-1,2,6-thiadiazines
6.5. Pd C-C coupling of chloro-4H-1,2,6-thiadiazines
6.5.1. Couplings of 4H-1,2,6-thiadiazin-4-ones
6.5.1.1. Suzuki-Miyaura couplings (symmetrical)
6.5.1.2. Suzuki-Miyaura couplings (unsymmetrical)
6.5.1.3. Sonogashira couplings
6.5.1.4. Homocoupling
6.5.1.5. Stille couplings (symmetrical)
6.5.1.6. Stille couplings (unsymmetrical)
6.5.2. Couplings of 4H-1,2,6-thiadiazin-4-imines
6.5.3. Couplings of 4H-1,2,6-thiadiazine-4-ketals
6.6. Pd-Catalysed C-N coupling of chloro-4H-1,2,6-thiadiazines
6.7. Oxidation of the 4H-1,2,6-thiadiazine sulfur atom
7. Transformations of 1,2,6-thiadiazine to other ring systems
 7.1. Transformations to 4,5,6-trichloropyrimidine-2-carbonitrile 121
 7.2. Transformations to 1,2,5-thiadiazoles 123
7.3. Transformations to other ring systems
8. Degradation of the 1,2,6-thiadiazine ring
9. Important compounds and applications
 9.1. Medicinal applications
 9.2. Agrochemical applications
 9.3. Electronic applications
 9.4. Other applications
10. Conclusions
Acknowledgements
References

Nitroalkenes in diverse synthesis of heterocyclic compounds with two or three heteroatoms: recent advances
Seyyed Emad Hooshman, Azim Ziyaei Halimehjani
1. Introduction
2. Imidazoles and their reduced derivatives
3. Pyrazoles and pyrazolidines
4. Triazoles
5. Thiadiazoles and thiazines
6. Isoxazolines and oxazines
7. Dihydropyrimidines
8. Imidazopyridines
9. Bicyclic compounds
10. Diazepines
11. Reactions of nitroepoxides
12. Conclusion
Acknowledgements
References

Palladium-catalyzed domino carbopalladation/cyclization of allenes
Roberto Sala, Gianluigi Broggini
1. Introduction
2. Carboamination of allenes
 2.1. Palladium-catalyzed intermolecular coupling/intramolecular amination processes
 2.2. Palladium-catalyzed intramolecular coupling/intramolecular amination processes
 2.3. Carbonylative carbopalladation/intramolecular amination processes
3. Carboalkoxylation of allenes
 3.1. Palladium-catalyzed intermolecular coupling/intramolecular alkoxylation processes
 3.2. Carbonylative carbopalladation/intramolecular alkoxylation processes
4. Carboalkylation of allenes
5. Conclusions
References

Enantioselective synthesis of five-membered heterocycles through [3+2]-cycloadditions with isocyanate esters
Gonzalo Blay, Carlos Vila, Pablo Martinez-Pardo, Jose R. Pedro

1. Introduction
2. Enantioselective synthesis of 2-oxazolines from carbonyl compounds
 2.1. Enantioselective reactions of α-isocyanate esters with aldehydes
 2.1.1. Gold and silver catalysis
 2.1.2. Platinum and palladium catalysis
 2.1.3. Organocatalytic reactions
 2.1.4. Cooperative metal/organocatalysis
 2.2. Enantioselective reactions of α-isocyanate esters with ketones
 2.2.1. Enantioselective reactions with 1,2-dicarbonyl compounds
 2.2.2. Enantioselective reactions with unactivated ketones
3. Enantioselective synthesis of 2-imidazolines from imines
 3.1. Enantioselective reactions of α-isocyanate esters with aldines
 3.1.1. Metal catalysis
 3.1.2. Organocatalytic reactions
 3.1.3. Cooperative metal/organocatalysis
 3.2. Enantioselective reactions of α-isocyanate esters with ketimines
 3.2.1. Reaction with acyclic ketimines
 3.2.2. Reaction with cyclic and isatin ketimines
4. Enantioselective synthesis of dihydropyrrroles and related compounds
 4.1. Enantioselective synthesis of α-isocyanate esters with acyclic electrophilic alkenes
 4.2. Enantioselective synthesis of 3,3'-pyrrolidinyl spirooxindoles
 4.3. Desymmetrization of cyclic olefins
 4.4. Enantioselective synthesis of pyrrolindolines via cascade reactions
5. Enantioselective synthesis of 1,2,4-triazolines
6. Conclusion
Acknowledgements
References

Recent advances in the synthesis of new pyrazole derivatives
Juan-Carlos Castillo, Jaime Portilla

1. Introduction
2. Functionalized pyrazoles
 2.1. Aminopyrazoles
 2.2. Formylpyrazoles
3. Fused pyrazoles
 3.1. Pyrazolo[1,5-a]pyrimidines
 3.2. Pyrazolo[3,4-b]pyridines
 3.3. Synthetic utilities of fused pyrazoles
4. Conclusion
Acknowledgement
References

Synthetic approaches towards cyclopenta[b]indole scaffold
Samia R. Lima, Hugo Santos, Ralph C. Gomes, Manoel T. Rodrigues Jr., Fernando Coelho

1. Introduction
2. Metal-catalyzed approaches
 2.1. Palladium-catalyzed approaches
2.2. Gold-catalyzed approaches
2.3. Rhodium-catalyzed approaches
3. Brønsted acid catalyzed or promoted approaches
4. Lewis acid catalyzed or promoted approaches
4.1. Cyclization based on electrophilic aromatic substitutions (S_{E-Ar})
4.2. Cyclization based on Nazarov and Nazarov-type reactions
4.2.1. Racemic approaches
4.2.2. Enantioselective approaches
5. Miscellaneous approaches
6. Conclusions
Acknowledgments
References

Quinolones for applications in medicinal chemistry: synthesis and structures

Pedro Horta, Alina Secrieru, Andy Coninckx, Maria L. S. Cristiano

1. Introduction
2. Quinolones in medicinal chemistry
 2.1. Quinolones as antimalarial agents
 2.2. Quinolones as antibacterial agents
 2.3. Quinolones as antitumoural agents
 2.4. Quinolones as anticancer agents
 2.5. Quinolones with antiviral activity
 2.5.1. Quinolones as drugs against HIV
 2.5.2. Quinolones as drugs against HSV and HCV
 2.6. Quinolones with antifungal activity
 2.7. Quinolones with neurologic activity
 2.7.1. Quinolones as drugs for the treatment of anxiety
 2.7.2. Quinolones as drugs for the treatment of Alzheimer’s disease
 2.7.3. Quinolones with antinoceptive activity
 2.8. Quinolones with immunomodulatory and anti-inflammatory activities
 2.9. Quinolones with metabolic activity
 2.10. Quinolones as drugs for the treatment of ischemia
3. Synthesis of quinolones
 3.1. Type A
 3.2. Type B
 3.3. Type C
 3.4. Type D
 3.5. Type E
 3.6. Combination of multi-bond formation
4. Liabilities of quinolones
 4.1. Toxicity and side effects
 4.2. Selectivity
 4.3. Resistance
 4.4. Drug-drug and drug-food interactions
 4.5. Solubility, synthesis, characterization and pharmacokinetic profile
 4.6. Synthesis inherent problems
 4.6.1. Structural isomerism in quinolone synthesis
 4.6.2. Oxo-quinoline/hydroxy-quinoline tautomerism
5. Conclusions
Acknowledgements
References
Iso(thio)cyanate-strategy for the organocatalytic synthesis of selected heterocyclic structures

Sebastian Frankowski, Aleksandra Więckowska, Łukasz Albrecht

1. Introduction
2. Mechanistic considerations
3. Application of iso(thio)cyanates in asymmetric organocatalysis
 3.1. Electron-withdrawing-group-activated aliphatic iso(thio)cyanates in organocatalytic cascades
 3.2. Oxindole-derived isothiocyanates in organocatalytic cascades
 3.3. Other isothiocyanates in organocatalytic cascades
4. Conclusions
Acknowledgements
References

The chemistry of 3-nitrochromenes

Robby Vroemans, Wim Dehaen

1. Introduction
2. Synthesis of 3-nitrochromenes
3. Reactivity of 3-nitrochromenes
 3.1. Oxidations
 3.2. Reductions
 3.3. Conjugate additions
 3.4. Cycloaddition reactions
4. Conclusion
Acknowledgement
References

Chemistry and biology of 3,4-dihydropyrimidin-2(1H)-one (or thione) derivatives obtained by the Biginelli multicomponent reaction

Brenno A. D. Neto, Talita de A. Fernandes, Mauro V. Correia

1. Introduction
2. The Biginelli multicomponent reaction mechanisms
3. Catalysis’ roles and solvent effects
4. Enantioselective versions of the Biginelli multicomponent reaction
5. Biological activity of DHPM
 5.1. Anticancer activity
 5.2. Antimicrobial activity
 5.3. Anti-HIV activity
 5.4. Calcium channel blockers (CCBs)
6. Concluding remarks
Acknowledgement
References

Synthesis of heterocyclic systems from α,β-unsaturated diazoketones

João V. Santiago, Clarice A. D. Caiuby, Antonio C. B. Burtoloso

1. Introduction
 1.1. Synthesis of α-diazocarbonyl compounds
 1.2. Synthesis of α,β-unsaturated diazoketones
2. Recent methods for the synthesis of α,β-unsaturated diazoketones
3. Mechanism for the stereospecific synthesis of E- or Z-α,β-unsaturated diazoketones
4. Synthetic application of α,β-unsaturated diazoketones
 4.1. General applications
 4.2. α,β-Unsaturated diazoketones as intermediates for the synthesis of heterocyclic
 4.3. Burtoloso’s research group contribution in the synthesis of heterocyclic systems via
α,β-unsaturated diazoketones intermediates

5. Conclusions
Acknowledgment
References

Isoxazol-5-ones: unusual heterocycles with great synthetic potential
Alessandra A. G. Fernandes, Amanda F. da Silva, Samuel Thurow, Celso Y. Okada Jr., Igor D. Jurberg

1. Introduction
1.1. General reactivity
2. Applications in organic synthesis
2.1. Functionalization of the isoxazolone ring
2.1.1. Alkylations
2.1.2. Oxidations
2.1.3. EDA complexes
2.1.4. Annulations
2.1.4.1. Cycloadditions
2.1.4.2. Spirocyclizations
2.2. Transforming the isoxazolone ring
2.2.1. Alkynes
2.2.1.1. Flash vacuum pyrolysis (FVP)
2.2.1.2. Nitrosative treatment
2.2.2. Catalytic methods involving metal-nitrenoid intermediates
2.2.2.1. Azadienes
2.2.2.2. 1-Azabicyclo[3.1.0]hex-2-enes and related heterocycles
2.2.2.3. Pyridines and piperidines
2.2.2.4. 2H-Azirines
2.2.3. Reductive protocols
2.2.3.1. Quinolines
2.2.3.2. Pyridines
2.2.4. Other metal-catalyzed transformations
2.2.4.1. Isoquinolines
2.2.4.2. 1,3-Oxazin-6-ones
2.2.4.3. Pyrimidinediones
2.2.5. Photochemical reactions
2.2.5.1. Photolysis
2.3. Total syntheses of natural products
2.3.1. Isoxazolones as intermediates
2.3.1.1. Total synthesis of (-)-Lycoramine
2.3.2. Isoxazolones as synthetic targets
2.3.2.1. Synthesis of Parafungins A and C models
2.3.2.2. Synthesis of isoxazolone glucosides
3. Conclusions
Acknowledgements
References

Reactions of 5-formyl- and 5-acyl-3,4-dihydro-2H-pyran and their annelated analogs with nucleophiles
Dmitry V. Osipov, Vitaly A. Osyanin, Yury N. Klimochkin

1. Introduction
2. Reactions of 5-formyl- and 5-acyl-3,4-dihydro-2H-pyran with nucleophiles
2.1. C-Nucleophiles
2.1.1. Enolates and CH-acids
Post-Ugi transformation of N-substituted-2-alkyneamides for the construction of diverse heterocyclic scaffolds
Saeed Balalaie, Pegah Shakeri

1. Introduction
2. Synthesis of functionalized N-substituted-2-alkyneamides through Ugi four-component reaction (Ugi-4CR)
3. Post-Ugi transformation reaction based on N-substituted-2-alkyneamides
4. Metal-catalyzed post-Ugi transformation of N-substituted-2-alkyneamides
 4.1. Pd-catalyzed post-Ugi transformation of functionalized N-substituted-2-alkyneamides
 4.2. Six-component reaction for the stereoselective synthesis of 3-arylidene-2-oxindoles via sequential Ugi/Heck carbocyclization/Sonogashira/nucleophilic addition
 4.3. Sequential Ugi-4CR/C-H activation using (diacetoxyiodo)benzene for the synthesis of 3-(diphenylmethylidene)-2,3-dihydro-1H-indol-2-ones
5. Au-catalyzed post-Ugi transformation of functionalized N-substituted-2-alkyneamides
6. Metal-free post-Ugi transformation of functionalized N-substituted-2-alkyneamides to access heterocycles
 6.1. Post-Ugi transformation through radical formation
 6.2. Metal-free synthesis of fused triazolodiazepino[5,6-b]quinolone derivatives via a sequential Ugi-4CR/nucleophilic substitution/intramolecular click reaction
7. Conclusion
Acknowledgement
References