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Introduction
Mammals have an absolute requirement for 
selenium. This is usually present in plasma at 
between 70-140 µg/L, with this acquired throu-
gh food or supplements in either organic (e.g. 
seleno-L-methionine, Se-methylseleno-L-cy-
steine, seleno-L-cysteine, selenocystine) or 
inorganic forms (e.g. selenite, selenate).
Seleno-L-methionine is the predominant form 
in most diets [1]. Deficiency (intake <20 µg/
day) is associated with an increased incidence 
of some cancers, infections, Alzheimer’s and 
Parkinson’s diseases, decreased function of the 
immune system and thyroid, and male infertili-
ty [2]. Severe deficiency is strongly associated 
with fatal cardiomyopathy (Keshan’s disease 
[2]). Supplementation does not show benefit 
against prostate cancer in selenium-deficient 
men, and may even increase risk [3]. High pla-
sma selenium (>140 µg Se/L) has also bee as-
sociated with an increased risk of type 2 diabe-
tes, though this is not universally agreed upon 
[4]. Both low and high selenium levels therefore 
appear to have potential risks. Most selenium 
is incorporated into selenoproteins, via a co-
ding system that allows incorporation of sele-
no-L-cysteine (Sec) into certain enzymes [2].
In contrast, selenomethionine (SeMet) is incor-
porated into proteins in a random manner in 

place of Met, and dependent on the amino acid 
levels. Humans express >25 selenium-contai-
ning proteins with a range of tissue and cell 
distributions [2]. Well-characterised species in-
clude glutathione peroxidase (GPx), thioredoxin 
reductase (TrxR), selenoprotein P and some 
isoforms of methionine sulfoxide reductases 
(Msrs). Each of these is linked with defences 
against oxidative stress, including direct detoxi-
fication (GPx, TrxR, selenoprotein P), and repair 
(Msrs). Selenoproteins K, M, N, and H have also 
been linked to redox homeostasis [5].
Sulphur species critical to human health, with 
the major in vivo pools being the tripeptide 
glutathione (GSH; γ-Glu-Cys-Gly) and pro-
tein-bound cysteine (Cys), cystine and methio-
nine (Met). GSH is usually present in cells at 
2-10 mM, with cytosolic and mitochondrial 
protein-bound thiols being ∼40 mM and 70-
90 mM respectively [6, 7]. Extracellular thiol 
levels are lower, with the plasma low-mole-
cular-mass pool being <25 µM and protein 
thiols ∼600 µM (mainly Cys34 of HSA) [7]. 
Major contributors to the cellular protein pool 
are thioredoxins, glutaredoxins and peroxi-
redoxins [8-10], all of which are involved in 
oxidative defence and redox homeostasis. The 
cellular selenol pool is low, with the major se-
lenoenzyme GPx 2µM [11].

Inflammation and oxidant formation
Oxidants are generated continually in aerobic 
biological systems as a result of respiration 
and normal physiological processes (Fig. 1). 
These species can be formed at elevated le-
vels during disease and aging [12]. Some of 
these species are generated intentionally to 
carry out biological functions (e.g. peroxida-
ses, NADPH oxidases, nitric oxide synthases, 
lipoxygenases and prostaglandin synthases) 
whereas in other cases oxidants are formed 
as byproducts (e.g. by monoamine oxidases) 
or accidentally (electron leakage from mito-
chondria) [12].
Stimulated leukocytes (white blood cells) 
use enzyme complexes including NADPH 
oxidases (NOxs, particularly NOX-2) and ni-
tric oxide synthases to generate radicals and 
two-electron oxidants (Fig. 2) [12-16]. These 
oxidants are critical to the human immune 
response and are powerful bacteriostatic or 
bactericidal agents [17], but can also damage 
host tissue [18], especially when the immune 
system is inappropriately stimulated. Con-
sequently chronic inflammation is strongly 
associated with many human pathologies in-
volving inflammation (e.g. cardiovascular di-
seases, rheumatoid arthritis, asthma, cystic 
fibrosis, Alzheimers and Parkinson’s disea-
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ses, some cancers etc.), and involves a wide 
variety of different oxidants often generated 
concurrently (Fig. 2).

Antioxidant and protective systems
Oxidant formation in biological systems is ti-
ghtly regulated and controlled by defensive and 
repair systems (Fig. 3). Despite this, oxidative 

damage is widespread in most organisms [12], 
with this due to increased oxidant generation, 
a failure or decrease in defence systems, or 
both. This imbalance is often termed “oxidative 
stress” [19].
Many of these protective systems require sul-
fur or selenium. Selenium is typically more 
reactive with oxidants due to its more favou-

rable redox and nucleophilic properties [20]. At 
physiological pH (7.4), thiols (RSH) are usually 
present in the less-reactive neutral form (cf. 
pKa for Cys of ∼8.7, though this varies consi-
derably) whereas selenols (RSeH) are usually 
present as the anion (RSe-, pKa5.2) [21]. Thus 
sulfur- and selenium- species should readily 
scavenge oxidants, and provide protection 
against inflammation-induced damage; this is 
briefly reviewed below with an emphasis on se-
lenium species (see also [22, 23]).

Oxidative chemistry of sulfur
and selenium compounds
Rate constants have been determined for 
reaction of oxidants with many sulfur- and 
selenium-species. For low-molecular-mass 
compounds, the rate constants, k, for selenium 
species are typically 10- to 100-fold greater 
than for their sulfur analogues (Figs. 4, 5). With 
proteins other factors such as structure, envi-
ronment and local amino acid interactions can 
modulate reactivity [24].
SeMet reacts with ONOOH with a rate constant 
that is comparable to that for Cys, and higher 
than for Trp or Met (Fig. 4) [25]. SeMet can 
therefore compete effectively for ONOOH with 
other targets when present at similar concen-
trations. The major product is the selenoxide, 
SeMetO (analogous to a sulfoxide). It should 
be noted however that SeMet levels in vivo are 
lower than most biological targets.
HOCl reacts with SeMet with k 3.2x108 M-1s-1 
[26], ∼10-fold higher than for Met, and similar 
to Cys [27]. HOSCN and secondary chlorami-
nes (RNHCl, generated from HOCl and amines) 
also react with SeMet faster than Met (Fig. 5) 
[23, 28, 29]. The major products are the sele-
noxide and sulfoxide respectively, though with 
HOCl dehydroselenomethionine is also formed 
[30]. Photochemical systems, H2O2, and amino 
acid- and protein-bound hydroperoxides also 
convert SeMet to SeMetO [31, 32].
Reaction of Met and SeMet with HO• occurs at 
diffusion-controlled rates [33, 34], with for-
mation of short-lived adducts that decay to the 
radical-cations (Met•+ or SeMet•+). Hydrogen 
atom abstraction at neighbouring C-H bonds 
also occurs with Met, and to a lesser extent 
for SeMet [33-35]. The radical-cations can be 
stabilised via 3-electron bonds with suitable N 
or O atoms, or S or Se atoms of another parent 
molecule. This stabilisation is greater for Se-
Met•+, with this resulting in a ∼300-fold incre-
ase in lifetime [36], which results in significant 

51

Fig. 1

Examples of endogenous and exogenous factors that result in oxidation formation

Fig. 2

Oxidant formation by activated leucocytes

Fig. 3

Damage removal and repair systems in cells
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reaction with O2, and SeMetO formation. With 
Met•+, other reactions such as decarboxylation 
occur, with this limiting reaction with O2 and 
MetO formation [37]. SeMet may therefore be a 
more effective antioxidant against radical-me-
diated damage than Met [36].

Selenols and thiols
Kinetic data for free selenols (RSeH) is limited 
due to their rapid auto-oxidation to diseleni-
des (RSeSeR). Computational studies suggest 
only small (∼3-fold) differences between thiols 
and selenols [38], whereas experimental data 
for Sec and Sec-containing peptides indicate 
that these are 16-100 fold faster than for thiols 
(Fig. 5) [28, 39]. ONOOH also exhibits higher 
reactivity with selenols compared to thiols 
(Fig. 4) [40-42]. The active site Sec of GPx is 
more reactive than parent Sec, with k for H2O2, 
ONOOH, and HOSCN being 105-107 M-1s-1 [28, 
43-45]. These higher rate constants has been 
ascribed to hydrophobic effects and hydrogen 
bonding interactions [46].
Reaction of thiols with HO• occurs at the dif-
fusion limit [47] and selenols are likely to do 
likewise. The phenoxyl radical from N-Ac-Tyr-a-
mide oxidises Sec and selenium-substituted 
glutathione, GSeH, ∼1,000-fold faster than for 
Cys [48]. Tyr phenoxyl radicals on insulin react 
with Sec with lower rate constants, and GSeH 
is slower still, though these are still ∼400-fold 
faster than for GSH [48]. Selenols are therefore 
potent scavengers of protein-bound radicals, 
with rate constants similar to those of ascorba-
te and urate [48, 49].
With two-electron oxidants (e.g. ONOOH and 
HOCl), thiols give sulfenic acids (RSOH) [50], 
and selenols are believed to yield selenenic 
acids (RSeOH). In some cases, intermediates 

(e.g. RS-Cl and RSeCl) may be formed that un-
dergo rapid subsequent hydrolysis. RSOH and 
RSeOH react further to give disulfides/disele-
nides (RSe-SeR), mixed seleno-sulfur species 
(RSe-SR), and oxyacids (i.e. sulfinic, RSO2H; 
sulfonic, RSO3H; seleninic RSeO2H; selenonic, 
RSeO3H) [51]. These reactions are particularly 
rapid for selenium species in aqueous solution 
[52], but selenenic acids have been detected 
in organic solvents [53], and in the active site 
of bovine GPx1, probably as a result of steric 
shielding [54]. Selenonic (RSeO3H) acid un-
dergoes fragmentation to give dehydroalanine 
(DHA) and selenite [51].
One-electron oxidation of RSH gives thiyl 
radicals (RS•) which have a complex chemi-
stry, including reversible reaction with O2 to 
form a peroxyl radical [55], and with GS- to 
form GSSG•- [56]. The latter undergoes rapid 
electron transfer with O2 to give O2

•- [57]. Thiyl 
radicals can abstract hydrogen atoms from 
suitable C-H bonds, [58], with this resulting 
in damage propagation. Thiyl radical dimeri-
zation generates reducible protein disulphide 
cross-links [59, 60]. Thiyl radicals can also 
undergo reversible addition to fatty acid dou-
ble bonds, which can lead to cis-trans isome-
risation that can perturb cellular metabolism, 
membrane structure and signalling [61].
Selenyl radicals (RSe•) formed from selenols 
are less reactive and have a lower reduction 
potential than RS•, and hence do not readily ab-
stract hydrogen atoms [62]. Evolution may the-
refore have favoured (energetically-costly) Sec 
residues in proteins as a means of protecting 
proteins from damage by unwanted thiyl radi-
cals [62, 63].
Thiyl radicals can undergo desulfonisation to 

form dehydroalanine (DHA), providing an alter-
native route to this species [58, 64]. This may 
be of biological relevance, as DHA can undergo 
Michael addition with thiols to form thioether 
adducts [65].
These have been detected in lens proteins, 
where protein catabolism is minimal, with the 
amounts correlating with the incidence and se-
verity of age-related cataract [66].

Diselenides and disulfides 
Disulfide and diselenide oxidation is slower 
than for thiols/selenols and thio-/seleno- ethers 
[39, 41], but this may be important in the deple-
tion of GSH and mitochondrial α-lipoic acid and 
α-lipoamide [41, 67].
Diselenides have been examined as pro-drugs 
for selenols and selenoethers as antioxidants 
and GPx mimetics [68]. In contrast, HOCl and 
HOBr react readily with disulfides [27, 69, 70], 
and one electron oxidation of disulfides by HO• 
occurs at diffusion controlled rates [47].
Disulfide oxidation by H2O2 [71], 1O2 [72] 
and ONOOH [73] gives mono- (RS(O)SR) and 
di-oxides (RS(O2)SR). The mono-oxides are 
weak oxidants that can oxidise thiols and di-
srupt zinc-sulfur clusters [74, 75], as well as 
inducing thionylation of proteins [76]. The 
latter can inhibit kinases modulate cell signal-
ling [77]. Diselenide oxidation by two-electron 
oxidants is also slow and limited kinetic data 
is available [42]. Both GSeSeG and other di-
selenides consume H2O2 via enzyme-coupled 
reactions that can prevent oxidant-induced 
damage in vitro [78, 79]. This is unlikely to be 
due to direct H2O2 reaction, as this is slow, with 
a stabilised selone species (RC=Se) being the 
reactant; the latter may arise via diselenide re-
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Fig. 4

Second order rate constants for the reaction of 
ONOOH with seleno compounds and sulphur 
analogues (from [42])

Fig. 5

Second order rate constants for the reaction of HOSCN with seleno compounds and sulphur analogues 
(from [28, 39])
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duction by GSH [80]. Non-bonding interactions 
between Se and nucleophiles can modulate this 
reactivity [81, 82].
Selenocystine reacts with HO• with k 8.1x109 
M-1s-1 [34], and 3,3-diselenodipropionic acid 
reacts with a model peroxyl radical (CCl3OO•) 
with similar rate constants to those for α-toc-
opherol and ascorbate, suggesting that disele-
nides may be effective scavengers [83].
These reactions involve a radical-cation (RSe-
SeR•+) that can be stabilised by carboxylates 
[34]; these species are stabilised relative to the 
disulfides, and have slower first order decay 
rate constants [34].

Recycling and repair of selenium
and sulfur oxidation products
The initial products of thiol and selenium oxida-
tion are often easily reduced back to the parent, 
though over-oxidation can occur. This reversi-
bility can result in catalytic activity.
MetSO is not reduced rapidly by thiols, but is 
recycled by the methionine sulfoxide reductase 
enzyme family (Msrs) [84, 85]. These enzymes 
are stereospecific, with MsrA and B reducing 
the S and R stereoisomers respectively. MsrA 
can reduce free and protein-bound MetSO, 
though with a preference for the latter. MsrB 
reduces peptide-bound MetSO particularly on 
unfolded proteins. A third Msr from E. coli redu-
ces free, but not peptide-bound MetSO; isotype 
is however limited to prokaryotes or unicellular 
eukaryotes [85]. Selenoxides are more readily 
reduced than sulfoxides, and this is the basis 
for GPx mimetic activity, in which oxidation is 
followed by reduction by 2 GSH equivalents to 
give the parent selenium compound and GSSG 
[68]. SeMetO is reduced by Cys, ascorbic acid 
and some drugs [86], as well as the thiore-
doxin/thioredoxin reductase system [32].

Selenols and thiols
Many protective enzymes contain active site 
Cys residues (e.g. peroxiredoxins, thioredoxins, 
glutaredoxins) and utilise the high reactivity of 
Cys to remove oxidants. With 2-Cys peroxire-
doxins, initial conversion of the catalytic Cys 
to a sulfenic acid is followed by rapid reaction 
with a neighbouring (resolving) Cys to give a di-
sulphide. This is then efficiently reduced by the 
Trx/TrxR/NADPH system. GPx and TrxR [87] 
use a Sec residue to rapidly reduce H2O2 (with 
GPxs) or disulfides, hydroperoxides [10, 32, 87, 
88] and HOSCN (for TrxR) [89]. Mutation of the 
Sec residue in TrxR to Cys decreases its ability 
to detoxify oxidants [90].

Over-oxidation of sulfenic acids gives sulfinic 
(RSO2H) and sulfonic acids (RSO3H). Most sul-
finic acids are irreversible products but some, 
including those in peroxiredoxins, can be redu-
ced by sulfiredoxin [91]. In contrast, sulfonic 
acid formation is irreversible [92]. Sec is more 
resistant to over-oxidation than Cys, as both 
the selenenic (RSeOH) and seleninic (RSeO2H) 
acids are readily reduced by free thiols [52, 93]. 
This may be a further evolutionary advantage 
for using Sec in proteins [93].

Diselenides and disulfides
Disulfides are readily reduced by glutathione 
reductases (GR), Trxs, glutaredoxins, disulfide 
isomerases and TrxR. GR is the major enzyme 
responsible for reducing GSSG to GSH [94], 
whereas Trx reduces protein disulfides [95]. 
Both enzymes employ utilise a Cys-X-X-Cys 
motif [95]. Mammalian TrxRs utilise a similar 
principle but contain a Gly-Cys-Sec-Gly motif 
[96, 97], allowing the reduction of a greater 
range of substrates. The efficacy of TrxR is at 
least partly due to the increased nucleophilicity 
of RSe- compared to RS- [62], and mutation of 
the Sec to Cys decreases the disulfide reducta-
se activity of TrxR [90, 98].

Conclusions
The redox chemistry of sulfur- and sele-
nium-containing compounds is critical to main-
taining a redox balance in living organisms. 
Recent data indicate that low molecular mass 
selenium-containing compounds offer signifi-
cant potential as protective agents due to their 
favourable kinetic, nucleophilic and reduction / 
recycling properties, and may have significant 
therapeutic potential in a range of inflammatory 
diseases where one- and two-electron oxidants 
may contribute to the disease pathology.
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Zolfo e selenio nei processi
di protezione ossidativa
Il selenio è un oligoelemento essenziale e 
svolge un ruolo chiave in alcune proteine 
che rimuovono i radicali e gli ossidanti 
e, quindi, riduce lo stress ossidativo. 
Questo articolo mette in evidenza il 
potenziale di composti del selenio nel 
modulare i danni indotti da radicali e 
ossidanti molecolari nelle infiammazioni 
e nelle malattie
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