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Abstract. This review provides a summary of syntheses of galanthamine since 2006, the time of publication 
of the last major review on this topic. Some landmark syntheses that were reported prior to 2006 are 
mentioned here as well for completeness. A brief review of biosynthesis of galanthamine is also provided. 
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1. Introduction 

Galanthamine (1), (Figure 1; alternate spelling as galantamine) is an alkaloid belonging to the 
Amaryllidaceae family that contains several diverse structural types, as shown in Figure 2. The alkaloid was 
isolated from Galanthus woronowii1 and occurs in several other genera of Amaryllidaceae2 such as 
Narcissus (daffodil) and Lycoris, where it occurs to the extent of <2%, along with narciclasine (3, see Figure 
2). Because of its unique activity as acetylcholine esterase (AChE) inhibitor it serves in the treatment of 
Alzheimer disease and is marketed as such worldwide. The useful biological activity of galanthamine 
coupled with its scarcity from natural sources has led to increased interest in approaches to its total 
synthesis. Several reviews are available that cover the chemistry and pharmacology of this natural product.3 

 

 
Figure 1. Structures of galanthamine (1) and narwedine (2). 
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Even though a viable synthesis of galanthamine on an industrial scale is available4 the interest in new 
approaches continues. The intent of our article will be primarily the discussion of various approaches to total 
synthesis of galanthamine (1) and its immediate precursor, narwedine (2) (see Figure 1; carbon numbers as 
used throughout this chapter are added to the structures). An overview of the biosynthesis of galanthamine is 
also provided. 
 
2. Biological properties 

Because of the activity of galanthamine as an inhibitor of AChE and its potential in the treatment of 
Alzheimer disease the interest in its derivatives as well as other biological activities continues. A detailed list 
of additional biological activities, such as moderation of -aminobutyric acid (GABA) and glutamate release, 
has been published.3a The clinical use of galanthamine is significant especially in view of its neuroprotective 
activities. 
 
3. Biosynthesis 

As mentioned above, galanthamine (1) belongs to the Amaryllidaceae family of natural products that 
shows a fascinating diversity of different skeletal arrangements. Examples of different sub-groups of 
Amaryllidaceae alkaloids are displayed in Figure 2. A recent article classifies Amaryllidaceae alkaloids into 
nine distinct groups: norbelladine, lycorine, homolycorine, crinine, haemanthamine, narciclasine, tazettine, 
montanine and galanthamine.5 In addition, narciclasine is sometimes referred to as lycoricidinol.6 
Biosynthetically, all Amaryllidaceae alkaloids are derived from the amino acid tyrosine (11) via a series of 
enzymatic steps. The structural diversity becomes possible by means of a variation of the regiochemistry of 
the key oxidative aromatic coupling reaction. 
 

 
Figure 2. Examples of Amaryllidaceae alkaloids with different carbon skeletons. 
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The investigation of the biosynthetic pathway leading to galanthamine dates back to the early 1960’s 
when Barton and co-workers suggested that the title compound and structurally related Amaryllidaceae 
alkaloids are biosynthetically derived from norbelladine (6), Scheme 1, via an oxidative coupling reaction.7 
Barton then succeeded in applying an oxidative phenol coupling protocol to the synthesis of racemic 
galanthamine.8 This endeavor is briefly discussed in the subsequent section of this chapter. Later, Kirby and 
Fuganti confirmed these findings in independent studies.9 Additionally, the addition of 13C-labelled 4’-O-
methylnorbelladine (15) to Leucojum aestivum and analysis of metabolic products improved our 
understanding of the biosynthesis of this important Amaryllidaceae alkaloid.10 Nevertheless, the exact course 
of the biosynthetic route towards galanthamine (or other Amaryllidaceae alkaloids) still remains to be 
elucidated. 

The findings discussed above can be summarized as shown in Scheme 1 and Scheme 2. The 
biosynthetic route commences with tyrosine-decarboxylase catalyzed decarboxylation of tyrosine (Scheme 
1). Tyramine (12) then reacts with phenylalanine derived aldehyde 14. The precursor for the oxidative 
phenol coupling, namely 4’-O-methylnorbelladine is obtained after methylation of one of the phenolic 
hydroxyl groups in secondary amine 6. 
 

 
Scheme 1. Biosynthesis of galanthamine – part 1. 

 
The crucial oxidative coupling reaction between both aromatic rings proceeds in an ortho-para fashion 

as shown in Scheme 2. The reaction, probably catalyzed by a cytochrome P-450 dependent enzyme, delivers 
a highly reactive dienone (16). The phenolic hydroxyl moiety in intermediate 16 then spontaneously 
undergoes nucleophilic 1,4-addition of the phenolic hydroxyl group onto the enone moiety and benzofuran 
17 is obtained. The biosynthesis of galanthamine is completed after reduction of the carbonyl functionality 
and final N-methylation. 

The biosynthesis of Amaryllidaceae alkaloids (and other tyrosine derived natural products) is an 
impressive example of Nature’s ingenuity. Starting from common intermediates, only small variations in the 
biosynthetic pathway provide access to highly differing secondary metabolites. The point of divergence lies 
in the nature of the key oxidative phenol coupling reaction. Depending on the regiochemistry of this 
reaction, a variety of structurally intriguing classes of alkaloids are obtained. Some representative examples 
in the Amaryllidaceae family are shown in Scheme 3. While the aforementioned ortho-para coupling of 4’-
O-methylnorbelladine (15) ultimately results in the biosynthesis of galanthamine (1), alkaloids of the 
lycorine skeleton (5) are obtained via para-ortho coupling, and alkaloids of the crinine skeleton (10) are 
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accessible via para-para oxidative phenol coupling. 
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Scheme 2. Biosynthesis of galanthamine – part 2. 

 

 
Scheme 3. Oxidative phenolic coupling in the biosynthesis of different Amaryllidaceae alkaloids. 

 
Oxidative phenol coupling reactions also play an important role in the biosynthesis of other tyrosine-

derived secondary metabolites. The biosynthesis of morphine and related opioids proceeds in a similar 
fashion. The requisite dienone 20 is obtained by means of a cytochrome P-450-mediated oxidative ortho-
para coupling of (R)-reticuline (19) as shown in Scheme 4. 
 
4. Syntheses 

Since the first synthesis of galanthamine by Barton and Kirby in 1960,8 galanthamine has attracted the 
attention of the synthetic community. The on-going fascination of this relatively simple, but structurally 
intriguing spirocyclic natural product is also in no small way related to its promising biological properties, 
especially its application in the treatment of Alzheimer’s disease. 
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Scheme 4. Comparison of the biosynthesis of galanthamine (1) and morphine (21). 

 
This chapter is divided into two sections. While the first part is devoted to a brief discussion of 

Barton’s seminal biomimetic synthesis of galanthamine, and the development of oxidative coupling 
protocols, the second part describes in detail efforts that have been published since the last major review 
article by Marco-Contelles and co-workers, summarizing the syntheses of the title compound.3a 
 
4.1. Landmark achievements reported prior to 2006 

In 1960, Barton and Kirby published the first total synthesis of (±)-galanthamine.8 The strategy was 
based on the assumption that the biosynthetic route toward this class of alkaloids (galanthamine, narwedine, 
and others) proceeds via an oxidative phenol coupling as the key step. With this seminal disclosure, outlined 
in Scheme 5, the authors also initiated serious efforts towards the development of protocols for this 
important synthetic operation. Because of the pioneering nature of this publication and its importance to this 
field of research, Barton and Kirby’s synthesis is included in this chapter. 

As outlined in Scheme 5, the synthesis commenced with reductive amination of O-benzylisovanillin 
(22), which delivered the secondary amine 23 as precursor of the A-ring of the alkaloid. This material was 
then reacted with acid chloride 25, readily accessible from p-hydroxyphenylacetic acid (24) in a two-step 
protocol, and 26 was obtained after reduction of the amide and hydrogenolytic cleavage of the benzyl ether. 

With a short route to tertiary amine 26 at hand, the stage was set to develop conditions for the crucial 
oxidative phenol coupling reaction to establish the galanthamine skeleton. A variety of different conditions 
was screened for this key transformation; however, the oxidative protocols applied afforded the desired 
compound in only minute quantities. Oxidation of 26 with MnO2 seemed to be the most promising set of 
conditions to access narwedine (2), which nevertheless was isolated in only 0.3% yield. Barton and Kirby 
also reported the use of potassium ferricyanide, K3[Fe(CN)6], and found evidence of narwedine formation 
via a radiotracer method with 14C labelled material. However, 2 could not be isolated from the complex 
reaction mixture. Two years later, both researchers reported the successful utilization of potassium 
ferricyanide and were able to isolate narwedine (2) in 1.4% yield.11 
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Scheme 5. Barton and Kirby’s synthesis of (±)-galanthamine (1). 

 
The first total synthesis of galanthamine was accomplished after reduction of narwedine with lithium 

aluminum hydride. The natural product was obtained in 61% yield, along with 39% of epi-galanthamine. 
The authors observed the distinct difference of physical properties of the epimers. Galanthamine (1) was 
found to have higher solubility than its epimer (epi-1) and this was explained by hydrogen bonding of the 
hydroxyl group in galanthamine (1) to the oxygen of the ether ring. 

Most syntheses of galanthamine proceed via its direct precursor narwedine. In 1994, Shieh reported 
(based on the initial finding by Barton)11 a remarkable spontaneous resolution of racemic narwedine.12 When 
treated with catalytic amounts of optically pure narwedine (only few seed crystals are required to initiate the 
resolution), enantiomerically enriched narwedine is obtained after several hours of equilibration time. The 
transformation, outlined in Scheme 6, proceeds via a retro-Michael intermediate 27. The intermediary 
formed dienone 27 subsequently cyclizes to form the enantiomerically enriched material in an autocatalytic 
fashion. Interestingly, the chiral resolution also proceeds when seed crystals of galanthamine are added to 
the reaction mixture. 
 

 
Scheme 6. Autocatalytic resolution of narwedine. 

 
This remarkable protocol is well suited for large scale applications and decreases the overall costs of 

synthetic galanthamine as racemic routes can be employed in the preparation of enantiomerically pure 
galanthamine. Jordis and Fröhlich took advantage of this autocatalytic resolution technique and employed 
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the reaction in their multi-kilogram scale route to the Amaryllidaceae alkaloid.4 

Following the seminal reports by Barton and co-workers, a lot of attention was devoted to the 
development of efficient protocols for oxidative coupling reactions. In 1969, Kametani reported the use of 
K3[Fe(CN)6] as oxidant in the key step (eq. 7-1, Scheme 7).13 In analogy to previous syntheses of 
morphine,14 the para position at the aromatic ring was blocked by a bromine to force the coupling reaction to 
proceed at the desired ortho position. Additionally, the substrate did not contain a basic nitrogen as Franck15 
and Abramovitch16 reported that the presence of the basic nitrogen atoms decrease the yield in oxidative 
coupling reactions. Kametani reported an impressive 40% yield in the oxidative coupling reaction. However, 
this result could not be confirmed by other groups and upon carrying out the same reaction with the identical 
substrate, Vlahov was able to isolate only 15% of 29 from the reaction mixture.17 However, despite these 
discrepancies, the modifications developed by Kametani provided for a significant progress in this important 
area. A few years after his initial report, he was also able to show the importance of the bromine on the 
aromatic ring, as the substrate lacking the halide (30) provided the desired product in drastically reduced 
yield (eq. 7-2, Scheme 7).18 

 

 
Scheme 7. Oxidative coupling reactions to establish the galanthamine skeleton – part 1. 

 
Hypervalent iodine species, such as phenyliodine(III) bis(trifluoroacetate) (PIFA), were shown to be 

effective oxidants which delivered the product in 40% yield (eq. 8-1, Scheme 8).19 The authors mentioned 
the importance of the fluorinated solvent as the reaction did not proceed in either benzene or 
dichloromethane. The oxidative protocol with hypervalent iodine was also used by Kita and Schlenk in the 
preparation of other Amaryllidaceae alkaloids. 

Koga reported the first enantioselective total synthesis of galanthamine.20 The key oxidative phenol 
coupling was achieved upon addition of an excess of Mn(acac)3 to chiral ester 34 in acetonitrile (eq. 8-2, 
Scheme 8). The authors reported excellent 49% yield for this crucial transformation. 

In 1984, Vlahov also reported the application of an electrochemical method for the oxidative phenol 
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coupling reaction.21 Again, the bromide on 36 served to block the more active para position of the A-ring of 
the alkaloid. The anodic oxidation was carried out in acetonitrile, with small amounts of methanol and 
lithium perchlorate as the electrolyte, and yielded adduct 37 in excellent 80% yield. 
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Scheme 8. Oxidative coupling reactions to establish the galanthamine skeleton – part 2. 

 
Other developments in the oxidative coupling were reported over the years primarily in connection 

with approaches to morphine. In 1963, Barton published a route towards morphine which, in analogy to his 
contribution to galanthamine, featured an oxidative phenolic coupling as the key step.22 In this study, MnO2 
was used to trigger the cyclization and the desired product was obtained in marginal 0.012%. A few years 
later, Schwartz employed Tl(TFA)3 as the oxidizing agent23 and achieved a 23% yield in the oxidative 
coupling reaction. In another study by this group, published in 1988, PhI(OAc)2 was used and the isolated 
yield of the coupling adduct reached 25%.24 Also, VO(acac)2 was used as oxidizing reagent in phenol 
coupling reactions. In 1969, Holton and Schwartz were able to obtain satisfying 76% yield for the desired 
coupled adduct and a more recent report outlined the potential of VO(acac)2 for the coupling of 2-naphthols 
and phenols in excellent 90% yield.25 
 
4.2. Recent syntheses of galanthamine 

The main intent of this book chapter is the focus on the detailed discussion of recent syntheses of 



291 
 

 

galanthamine. The following section summarizes total synthetic efforts towards this important 
Amaryllidaceae alkaloid that have been published since the last major review on this topic was published by 
Marco-Contelles and co-workers in 2006.3a 

As evidenced by the numerous scientific contributions in this area, the interest in galanthamine did not 
wane over the past few decades. On the contrary, especially in the last few years, the alkaloid received 
increased attention from the synthetic community. Since 2006, several total syntheses have been reported, 
and numerous partial synthetic efforts have been published, leading to more or less complex sub-structures 
of the natural product. Additionally, a great number of research groups succeeded in the preparation and 
biological evaluation of structural analogs and derivatives of galanthamine with the ultimate goal to improve 
on the biological profile of the natural product, which is currently in use as medication against Alzheimer’s 
disease. 

In order to allow the reader to efficiently compare the different strategies towards galanthamine, all 
syntheses discussed within this section are briefly outlined in a retrosynthetic fashion, showing the most 
important operations. This brief outline is then followed by a detailed discussion of all syntheses published 
in the reporting period. 

The first synthesis discussed below was published by Chida in 2007.26 The route, retrosynthetically 
outlined in Scheme 9, commenced with the conversion of glucose to chiral cyclohexanone 41 via a Ferrier 
carbocyclization reaction. A subsequent Grignard reaction then connected enone 41 with the aromatic 
portion of the alkaloid. The crucial all-carbon quaternary center was established in a stereoselective fashion 
by means of a [3,3]-sigmatropic rearrangement. 

In the same year, also Brown reported a route towards (–)-galanthamine (Scheme 9).27 The route 
featured an enyne-metathesis reaction as key step to elaborate the C-ring and to simultaneously provide a 
side chain which was elaborated into the heterocyclic D-ring of galanthamine. Allylic oxidation and the 
installation of the secondary allylic alcohol concluded the synthesis of the title compound. 

Ishikawa and Saito completed their racemic synthesis of the title Amaryllidaceae alkaloid in 2008 that 
featured a double-Michael-Claisen condensation cascade reaction as the key step to deliver advanced 
intermediate 50 (Scheme 9).28 The benzofuran moiety was then elaborated via a Michael reaction. A late-
stage Pictet-Spengler reaction concluded the synthesis of the natural product. 

Bandicchor and co-workers route was based on the application of an oxidative phenol coupling as key 
step (Scheme 9).29 Chirality was introduced by means of a resolution of an advanced intermediate. 

Another route that started with aromatic precursors was reported by Magnus in 2009 (Scheme 10).30 
This route toward racemic narwedine takes advantage of the previously mentioned spontaneous resolution of 
narwedine (see Scheme 6)11-12 and thus constitutes a formal synthesis of (–)-galanthamine. The synthesis 
features a phenol alkylation as the key step for the elaboration of the all-carbon quaternary center and a 
Suzuki coupling to link the A-ring with the C-ring of the alkaloid. 

Banwell reported several syntheses of the Amaryllidaceae alkaloid. His first synthesis of (+)-
galanthamine took advantage of biocatalytically generated cis-cyclohexadiene diol 64 as the homochiral 
starting material (Scheme 10).31 The route, also shown in Scheme 10, was based on the application of an 
Eschenmoser-Claisen reaction to establish the crucial quaternary center. 
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Scheme 9. Retrosynthetic analysis of recent routes towards galanthamine – part 1. 

 

In 2010, Cho published a synthesis of racemic galanthamine (Scheme 10).32 In this effort, the nitrogen-
containing heterocycle was closed as the last major operation by means of a reductive amination. The 
requisite starting material for this reaction was obtained via Wittig olefination of the aldehyde in substrate 
65. Key steps in the preparation of this material were a Diels-Alder reaction and a Stille coupling to link 
aromatic precursor 68 with pyrone 69. 

Fan reported a synthesis of (–)-galanthamine in 2011 (Scheme 10). The route featured an asymmetric 
Michael addition as key step. Chiral intermediate 72 was then employed in a ketone-ester-condensation 
reaction to deliver 71. Closure of the D-ring was achieved by means of a Pictet Spengler reaction. 

Xie and Zhou reported completed a synthesis of (–)-galanthamine in 2012 (Scheme 11).33 The authors 
planned a Pictet-Spengler reaction as one of the final key steps for the elaboration of the nitrogen 
heterocycle in the natural product. The precursor for this transformation was envisaged to be accessed via a 
reductive Heck cyclization of readily available unsaturated ester 77. 
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Scheme 10. Retrosynthetic analysis of recent routes towards galanthamine – part 2. 

 
Tae’s route is based on the utilization of a ring-closing-metathesis (RCM) reaction as key step for the 

elaboration of the C-ring of the (–)-galanthamine (Scheme 11).34 Thus, the preparation of alkene 80 was 
envisaged which could be accomplished via a Mitsunobu reaction of phenol 81 and optically pure secondary 
alcohol 82. The aforementioned RCM reaction then delivered intermediate 79 after allylic oxidation and 
Wittig olefination of the intermediary formed ketone. A Heck reaction then concluded the synthesis of the 
natural product. 

Ojima accomplished a formal synthesis of (–)-galanthamine in 2013, Scheme 11.35 The authors 
envisaged the preparation of advanced intermediate 83 which has previously been reported by Trost and co-
workers.36 The asymmetric reaction of 85 and 86 constitutes the key step on route to substrate 83. 

A rather unique route towards (–)-galanthamine was published by Jia in 2015, Scheme 11.37 The 
synthetic strategy envisaged the construction of the C-ring at a late-stage via an asymmetric ketone-lactone 
condensation reaction. The substrate for this final operation was prepared by means of a Pd-catalyzed 
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annulation reaction of readily available alkyne 89. 
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Scheme 11. Retrosynthetic analysis of recent routes towards galanthamine – part 3. 

 
In 2015, Banwell reported his second synthesis of racemic galanthamine (Scheme 12). This route 

somehow seems to be the counterpart of Jia’s efforts as the Australian group devised a plan for the de-novo 
construction of the aromatic A-ring of the Amaryllidaceae alkaloid via a Diels-Alder reaction between 
advanced intermediate 93 and propynal (92).38 Diene 93 was envisaged to become accessible from 
tetrahydrofuran 94, which was prepared from alkyne 95. Commercially available achiral ketone 96 served as 
starting material for the synthesis of galanthamine. 

Hudlicky described a route to the enantiomer of the natural product from phenethyl acetate, which was 
converted into optically pure cyclohexadiene diol 100 by the whole cell oxidation with a recombinant 
microorganism expressing toluene dioxygenase (Scheme 12).39 Key steps include the connection of the A- 
and C-ring by means of a Mitsunobu reaction, and the application of a Heck reaction to establish the 
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quaternary center.  
So far the latest contribution to the field was reported by the research group of Banwell, who reported 

his third synthesis of racemic galanthamine in 2016, Scheme 12.40 The eleven-step procedure started with 
the reaction of phenol 90 with the allylic alcohol 103. A Heck reaction then served to close the B-ring of the 
alkaloid and the synthesis was completed with a reductive amination reaction. 
 

 
Scheme 12. Retrosynthetic analysis of recent routes towards galanthamine – part 4. 

 
In 2007, Chida reported the synthesis of (+)-galanthamine from D-glucose.26 A year before this 

synthesis of the Amaryllidaceae alkaloid was published, the route depicted in Scheme 13 was utilized for the 
preparation of actinobolin, a compound with pronounced antibacterial and anti-cancer properties.41 A little 
later, the very same intermediate, enone 41 was also successfully employed in the enantioselective 
preparation of morphine.42 

The route toward this highly versatile chiral intermediate commenced from commercially available 
4,6-O-benzylidene--D-glucopyranoside 104 as shown in Scheme 13. Tosylation of the C-3-oxygen and 
subsequent exposure to lithium aluminum hydride afforded 105 in good yield. Reductive cleavage of acetal 
105 and installation of the iodine at C-6 under Appel condition with subsequent silylation of the remaining 
C-2 hydroxy moiety then provided 107. This material was exposed to basic conditions and endopyranoside 
108 was obtained in good yield to serve as starting material for a catalytic Ferrier’s carbocyclization 
reaction. Elimination of the resulting secondary alcohol via a standard two-step protocol then concluded the 
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route to chiral key-intermediate 41. 
 

 
Scheme 13. Chida’s synthesis of galanthamine – part 1. 

 
With substantial amounts of enone 41 in hand, the stage was set for the elaboration of the 

galanthamine skeleton. Addition of 2,3-dimethoxyphenylmagnesium bromide to enone 41 at low 
temperature smoothly afforded 1,2-adduct 110 as a mixture of diastereomers as outlined in Scheme 14. 
Addition of pyridinium chlorochromate (PCC) to enol 110 then allowed the isolation of the corresponding 
cyclohexanone with the carbonyl at C5. Reduction of the enone moiety under Luche conditions mainly 
afforded unsaturated secondary alcohol 39 with the correct stereochemical configuration of the hydroxy 
moiety for the subsequent key Claisen rearrangement. 

When heated with triethyl orthoacetate (in the presence of 2-nitrophenol as acid catalyst) to 140 °C in 
a sealed tube, 39 underwent the desired Johnson-Claisen rearrangement and stereoselectively afforded ester 
38 in satisfying yield. It seems worthy of mentioning that the pKa of the acid catalyst was of crucial 
importance for the outcome of the reaction. The commonly used propionic acid was too acidic (pKa of 4.62) 
which triggered decomposition of the substrate, while the use of the less acidic 2-nitrophenol (pKa of 7.04) 
catalyzed the formation of the required ketene acetal and allowed the isolation of 80% of ester 38 after 60 
hours of reaction time. 

Next, the installation of the benzofuran moiety was accomplished by treatment of alkene 38 with N-
bromosuccinimide (NBS), which resulted in the formation of bromobenzofuran 111 in 84% isolated yield. A 
similar approach for the installation of the benzofuran moiety has previously been reported by Mulzer and 
co-workers in their synthesis of morphine.43 The material thus obtained was then hydrogenated to 
simultaneously remove the halide at C-5 and to cleave the benzyl group at C-8. This two-step one-pot 
procedure was best achieved when the reaction was initiated under neutral conditions that are required to 
efficiently affect the O-debenzylation. As soon as this was accomplished, potassium carbonate was added to 
the reaction flask as this was required for a fast cleavage of the halide in the substrate. Elimination of the C-8 
hydroxyl moiety and concomitant formation of the C-7–C-8 double bond then allowed the isolation of the 
advanced intermediate 113 in good yield. 
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The final task was the installation of the B-ring of the natural product. This reaction sequence started 
with the conversion of the methyl ester 113 to the corresponding methyl amide. Amide 114 was then 
exposed to Pictet-Spengler conditions, which allowed the isolation of the desired tetracyclic material that 
was converted to (–)-galanthamine (1) via reduction of the intermediary formed amide functionality with 
lithium aluminum hydride. 

Chida and co-workers presented an interesting route to the natural product with a highly efficient [3,3]-
sigmatropic rearrangement as the key step. The authors were able to utilize inexpensive and readily available 
glucose as chiral pool starting material for the preparation and achieved a competitive overall yield of 4.9% 
in 19 synthetic steps. The only drawback of the route is the somehow lengthy conversion of glucose into the 
commonly used building block 41. 
 

 
Scheme 14. Chida’s synthesis of galanthamine – part 2. 

 
Brown and co-workers reported a synthesis of (–)-galanthamine in 2007.27 The route, outlined in 

Scheme 15, featured an enyne-metathesis as key step and commenced with the reaction of the 
enantiomerically enriched propargylic alcohol 47 with phenol 46 under Mitsunobu conditions. Next, the key 
enyne metathesis reaction was performed. Cleavage of the TMS group under basic conditions and exposure 
of the corresponding terminal alkyne to the Grubbs first generation catalyst allowed the isolation of 44 in 
good yield. 

With substantial amounts of advanced intermediate 44 in hand, Brown could prepare the compound for 
the formation of the nitrogen heterocycle. Selective hydroboration and oxidation of the terminal double bond 
yielded primary alcohol 116, which was subjected to Heck reaction conditions, producing the tricyclic 
intermediate 43. Reaction with selenium dioxide using conditions previously employed by Trost and co-
workers36 then delivered the allylic alcohol 117 as 4.8:1 mixture of diastereomers, favoring the desired 
isomer. Mesylation of the primary alcohol and spontaneous closure of the 7-membered heterocyclic ring 
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completed the synthesis of galanthamine. 
Brown was able to access the natural product in eleven linear steps and provided a beautiful example 

of the synthetic versatility of the enyne metathesis reaction, which established the C-ring of galanthamine 
and furthermore provided the side chain required for the elaboration of the nitrogen-containing ring of the 
natural product. 
 

 
Scheme 15. Brown’s synthesis of (–)-galanthamine. 

 
In the early 2000s, Ishikawa and Saito developed a domino Michael-Claisen cyclization reaction.44 A 

few years later, the authors reported the application of this reaction cascade in the total synthesis of members 
of different classes of alkaloids. Ishikawa and Saito’s route to the title alkaloid is outlined below.28 

As shown in Scheme 16, the synthetic route was initiated with the above-mentioned domino Michael-
Claisen cyclization reaction. Reaction of commercially available ketone 51 with acrylic acid ester 52 in the 
presence of tert-butoxide delivered intermediate 118, which then afforded 50 upon reaction with TMSCl in 
methanol. With this cascade reaction the authors not only established the C-ring of the natural product, but 
also installed the quaternary carbon (C-8a) in 50, which was obtained in an impressive 62% yield. 

Next, the authors intended to elaborate the benzofuran moiety of the title compound. Reduction of the 
ester in 50 with DIBAL-H afforded primary alcohol 49. As the synthetic plan required debenzylation at this 
point, the enone had to be protected. Reaction of 49 with TsOH triggered an oxy-Michael addition reaction, 
protecting the double bond and allowing the required debenzylation to proceed smoothly, affording ketone 
119 in good yield. With this material in hand, the stage was set for the envisaged closure of the benzofuran 
ring of galanthamine. Exposure of 119 to MgCl2 resulted in the desired retro-Michael reaction, re-
establishing the enone, which subsequently underwent a conjugate addition by the phenolic hydroxyl group, 
establishing the heterocyclic benzofuran moiety in 120 as present in the natural product. 
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Scheme 16. Ishikawa and Saito’s synthesis of (±)-galanthamine. 

 
After having established the benzofuran motif of the Amaryllidaceae alkaloid, Ishikawa and Saito 

turned their attention to the elaboration of the D-ring of galanthamine. Now, the great advantage of the key 
strategy becomes even more obvious as the side-chain introduced in the key domino Michael-Claisen 
cyclization reaction could be smoothly converted to the heterocyclic D-ring. Oxidation of the primary 
alcohol in 120, followed by a Curtius rearrangement of the intermediary formed azide allowed the isolation 
of carbamate 121 in good overall yield. Next, the heterocyclic ring was closed by means of a Pictet-Spengler 
reaction. The final steps towards galanthamine included silyl ether formation, Pd-mediated oxidation of the 
silyl enol ether to the corresponding enone, and concomitant reduction of the enone and the carbamate 
moiety. 

In summary, Ishikawa and Saito presented a beautiful route toward racemic galanthamine. The 
advantage of the key strategy, namely the domino Michael-Claisen cyclization is clear. The reaction 
establishes the six-membered C-ring of the alkaloid and introduces the crucial C-8a quaternary center. 
Additionally, the side-chain paved the way for the elaboration of the heterocyclic D ring of the natural 
product. 

Also in 2008, Bandichhor and co-workers reported a concise route to (–)-galanthamine29 that is closely 
related to the biosynthetic route outlined in a previous section of this chapter (Scheme 17). 
 

 
Scheme 17. Bandichhor’s synthesis of (–)-galanthamine – part 1. 

 
The synthetic strategy envisaged the coupling of two readily available aromatic substrates. The 

synthesis of the A-ring of the alkaloid, outlined in Scheme 17, commenced with benzylation of the phenolic 
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hydroxy moiety of isovanilline (123). Bromination of the aromatic substrate and oxidation of the aldehyde 
functionality to the corresponding carboxylic acid 55 completed the short route to the A-ring portion of 
galanthamine. 

Benzylation of phenol 125, which served as a precursor of the C-ring of galanthamine, was followed 
by amidation and reduction to the corresponding secondary amine 56 (Scheme 18). This material was 
reacted with the previously prepared building-block of the A-ring, namely acid 55. The resulting amide was 
exposed to methyl isobutyl ketone and aqueous HCl at elevated temperature, which allowed for the isolation 
of the corresponding debenzylated material in good yield. 

The key oxidative coupling reaction was accomplished when the requisite debenzylated material was 
exposed to an excess of potassium ferricyanide in a biphasic mixture of chloroform and aqueous sodium 
bicarbonate. As pointed out in the previous section, the amide present in the substrate played an important 
role in ensuring a satisfactory yield. The intermediary formed enone then serves as a Michael acceptor for 
the phenolic hydroxy group and, as a consequence, the benzofuran moiety is established and highly 
advanced intermediate 53 is isolated in 48% yield. 

The endgame consists of the reduction of the enone using L-selectride, followed by the reduction of 
the amide group to the corresponding tertiary amine. Finally, the enantimoermically pure (–)-galanthamine 
was obtained after performing chiral resolution with a derivative of tartaric acid. 

Bandichhor’s synthesis of galanthamine is a nice example of the great advantages of biomimetic 
syntheses. By mimicking the natural process, the group presented a short and efficient route to this important 
alkaloid. The only drawback is the racemic nature of the process. However, Bandichhor and co-workers 
corrected this issue by performing classical chiral resolution technique. Because of the aromatic character 
and achiral properties of the early synthetic intermediates, this chiral resolution with a derivative of tartaric 
acid was carried out in the final step of the synthesis. 
 

 
Scheme 18. Bandichhor’s synthesis of (–)-galanthamine – part 2. 

 
Magnus’ route towards (–)-galanthamine featured an intramolecular phenol alkylation as the key 

step.30 The synthesis was carried out in a racemic fashion and took advantage of the spontaneous resolution 
of racemic narwedine that was described by Shie12 and based on initial findings of Barton.11 
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As shown in Scheme 19, the synthesis commenced with Suzuki coupling of commercially available 
aromatic halide 85 and boronic acid tris anhydride 129, which delivered adduct 59 in nearly quantitative 
yield. Next, the free phenol in 59 was reacted with ethyl vinyl ether and bromine and acetal 58 was obtained. 
Exposure of this material to cesium fluoride resulted in the cleavage of the silyl ether which triggered the 
key phenol alkylation and installed the crucial all-carbon quaternary center. Acid-catalyzed hydrolysis of the 
acetal initiated the conjugate addition of the phenol and the acetyl oxygen and allowed the isolation of highly 
advanced intermediate 57 in excellent yield. 

The synthesis of racemic narwedine (2) and the formal synthesis of (–)-galanthamine was concluded 
after reductive amination of 57 and addition of methanesulfonic acid to the intermediary formed boron 
adduct 128. 
 

 
Scheme 19. Magnus’ synthesis of (–)-galanthamine. 

 
In 2010, Banwell reported his first synthesis of (+)-galanthamine.31 In the later section of this chapter, 

another synthetic achievement reported by this group is discussed. 
As mentioned above, Banwell’s first synthesis of galanthamine is based on the application of 

enzymatically derived optically pure cyclohexadiene diol 64 as the starting material and the source of 
chirality. Cyclohexadiene diols have served as ideal starting point for the preparation of a variety of 
polyhydroxylated natural products, including various Amaryllidaceae constituents.45 Banwell’s synthesis 
provides another proof of the synthetic value of these enzymatically derived chiral synthons. 

The route, outlined in Scheme 20, commenced with the protection of the vicinal hydroxy groups as 
acetonide in diol 64, and selective epoxidation from the less hindered bottom face of the diene 130. Next, a 
nucleophilic attack of acetic acid with concomitant opening of the epoxide, protection of the remaining 
hydroxy group as its MOM-ether, and cleavage of the acetate allowed for the isolation of the highly 
functionalized vinyl bromide 63 as building-block for the C-ring of galanthamine, in good overall yield.  

Banwell’s synthetic strategy relied on the facile coupling of the A-ring and the C-ring moieties by 
means of a palladium-catalyzed protocol. At this point, the full advantage of enzymatically derived 
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cyclohexadiene diol 64 for the success of the synthetic endeavor becomes obvious. The halide in 64 not only 
serves as an element of polarization to differentiate between both double bonds in the epoxidation step, it 
also defines the position at which to connect both six-membered rings via the key palladium-catalyzed 
reaction. In this respect, Suzuki coupling of halide 63 with boronic acid 62 allowed for the isolation of 
adduct 131 in nearly quantitative yield. 

With a reliable route towards intermediate 131 in hand, the stage was set for the installation of the C-
8a quaternary center. The hydroxy group present at C-5 presented itself as ideal handle for a [3,3]-
sigmatropic rearrangement. However, before this reaction could take place, the stereochemical configuration 
of the hydroxy moiety had to be corrected to guarantee the correct configuration of the newly installed 
quaternary center. Mitsunobu inversion and cleavage of the intermediary formed ester under basic conditions 
afforded the requisite starting material 61 for the intended Claisen rearrangement in excellent yield. Next, 
treatment of the allylic alcohol 61 with N,N-dimethylacetamide dimethylacetal in refluxing toluene triggered 
the aforementioned Eschenmoser-Claisen rearrangement and a highly advanced dimethyl amide 132 was 
obtained after a reaction time of 7 days. 
 

 
Scheme 20. Banwell’s first synthesis of (+)-galanthamine. 

 
The closure of the benzofuran moiety succeeded following the hydrobromination strategy developed 

by Mulzer43 and also employed by Chida and co-workers26 in their preparation of galanthamine (see 
previous section). The addition of bromine to the reaction mixture not only resulted in the desired 
benzofuran formation but also affected bromination of the aromatic ring, and bis-bromide 133 was obtained 
in excellent yield. Having fulfilled the purpose of triggering the formation of the oxygen-containing D-ring 
of the alkaloid, hydrogenolytic debromination simultaneously removed both halides from the substrate. 
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Next, Banwell’s synthetic strategy called for the conversion of the acetonide moiety into the 7 double 
bond present in the natural product. This was achieved using the Corey-Winter olefination reaction. Before 
this protocol could be employed, the free hydroxy group was protected as its acetate and the acetonide was 
converted to the corresponding cyclic thiocarbonate 134. Exposure of this material to trimethylphosphite 
then triggered the formation of the cyclic carbene and the decomposition of this reactive intermediate with 
concomitant release of the desired double bond. 

The key strategy employed in the elaboration of the seven-membered heterocycle was a Pictet-
Spengler reaction. The sequence started with the saponification of the acetate and installation of a silyl ether 
at the C6 hydroxy group in order to achieve the reduction of the amide to the primary alcohol in the 
subsequent step. Addition of the Dess-Martin periodinane to the primary alcohol delivered the corresponding 
aldehyde, which was reacted with N-bromosuccinimide (NBS) and methylamine, allowing the isolation of 
amide 60 in excellent yield. Next, the silyl ether in 60 was cleaved and the resulting material was employed 
in the aforementioned key Pictet-Spengler reaction. Subjecting to the intermediate paraformaldehyde and 
trifluoroacetic acid (TFA) delivered the desired skeleton of (+)-galanthamine and the synthesis was 
concluded after Mitsunobu inversion of the secondary alcohol at C-6. 

Banwell’s route toward (+)-galanthamine serves as another proof for the great versatility of 
cyclohexadiene diols in the preparation of complex natural products. Minor drawback in the synthesis is the 
somewhat lengthy endgame with multiple functional group manipulations. Additionally, both hydroxy 
groups present in the starting material, namely those present in diol 64, had to be removed, reducing their 
synthetic relevance solely to chirality transfer. 

In 2010, Cho reported a route to racemic galanthamine.32 With the application of an intramolecular 
Diels-Alder (IMDA) reaction, Cho introduced a new synthetic element to the area of galanthamine research. 
The synthesis, shown in Scheme 21, commenced with the preparation of aryltin intermediate 68. Copper-
catalyzed reaction of the commercially available phenol 90 with tetravinyltin was followed by palladium-
mediated stannylation of the iodide and 68 was obtained in good overall yield. Next, Stille coupling with 
3,5-dibromo-2-pyrone (69) delivered the desired coupling adduct 136, which immediately underwent the 
intramolecular Diels-Alder reaction and lactones 67a (endo-adduct) and 67b (exo-adduct) were obtained 
from the reaction mixture. Careful screening of the reaction conditions revealed a dependence of the 
outcome (yield and ratio of 67a and 67b) on solvent, catalyst, and temperature of the reaction. The best 
results were obtained when the substrate was heated to 95 °C in DMF as solvent with 5 mol% of Pd(PPh3)4 
and 10 mol% CuI. 

Reaction of the exo-adduct 67a with sodium methoxide mediated the opening of the -lactone and 
formation of the corresponding methyl ester, which was converted into intermediate 66 via protection of the 
C-6 hydroxy moiety as MOM ether. 

The remaining steps of the synthesis of galanthamine were carried out by adopting a strategy described 
by Trost and co-workers in 2005 (prior to the reporting period of this chapter).36 The sequence started with 
reductive amination of the aromatic aldehyde and installation of a Boc-protecting group. Next, the ester 
moiety attached to the quaternary center was converted to the corresponding aldehyde via a standard 
reduction/oxidation protocol, and subsequent chain elongation upon reaction of the carbonyl with 
methoxymethyl phosphorus ylide delivered vinyl ether 138. Hydrolysis of this labile functionality and the 
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Boc-group under acidic conditions yielded the substrate for the final reductive amination reaction to close 
the seven-membered heterocycle (139). Galanthamine was then isolated after Dess-Martin oxidation of the 
C-6 hydroxyl group, Zn-mediated debromination, and reduction of the enone with L-selectride. 

Cho presented a concise route with a beautiful Stille coupling/IMDA cascade. Noteworthy is the 
careful selection of the starting material (presence of the aldehyde in aromatic precursor 68; concomitant 
installation of the quaternary center and future handle for the nitrogen heterocycle in the IMDA reaction) 
reduced the necessity for extensive functional group manipulations. 
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Scheme 21. Cho’s synthesis of (±)-galanthamine. 

 
Fan’s synthesis of (–)-galanthamine features an asymmetric Michael reaction as the key step at an 

early stage.46 Several catalysts were evaluated in this asymmetric conjugate addition reaction and thiourea 
144 was identified to be the most promising candidate. When allowed to react in the presence of catalytic 
amounts of 144, methyl ketone 73 and ,-unsaturated ester 74 afforded adduct 72 in excellent yield and 
80% ee., even on a multi-gram scale. A simple recrystallization of the reaction product significantly 
improved the enantiomeric excess and allowed the continuation of the synthesis in an enantiomerically pure 
fashion. 

Next, adduct 72 underwent an intramolecular ketone-ester condensation, which established the C-ring 
of the natural product, along with the crucial C-8a quaternary center 71. This material was then converted to 
the labile methyl enol ether 140 which, after Luche reduction and subsequent acidic hydrolysis, underwent 
an oxa-Michael reaction with concomitant formation of the benzofuran motif 141. 

With advanced intermediate 141 in hand, the stage was set for the elaboration of the D-ring of the 
natural product. Ketalization of the C-6 carbonyl was followed by reduction of the nitrile to the 
corresponding aldehyde, and subsequent chain elongation by means of a Henry reaction, which established 
the building block for the future D-ring of galanthamine. 
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Reduction of the nitroalkene and conversion of the requisite amine into carbamate 142 afforded the 
starting material for the Pictet-Spengler reaction, which established the galanthamine skeleton in good yield. 
The synthesis of the natural product was concluded after deketalization, -silylation, and installation of the 
C-7–C-8 double bond and reduction of the carbamate moiety. 
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Scheme 22. Fan’s synthesis of (–)-galanthamine. 

 
In 2012, Xie, Zhou, and co-workers reported a synthesis of (–)-galanthamine featuring a catalytic 

asymmetric hydrogenation and a reductive Heck cyclization as key steps.33 The route to the natural product 
is outlined in Scheme 23. 

Alkylation of 2-iodo-6-methoxyphenol (147) with bromide 78 afforded racemic aryl ether rac-145 in 
good yield. The resolution of the racemic material was then achieved via an enantioselective hydrogenation 
and subsequent oxidation of the intermediary reduced carbonyl group. Exposure of the enantiomerically pure 
aryl ether (S)-145 to a Wittig olefination delivered the starting material for the key reductive Heck 
cyclization, namely ,-unsaturated ester 77 in excellent yield. 

The conditions of the key cyclization reaction were carefully optimized to prevent the previously 
reported palladium-catalyzed ionization of the aryloxy group, which would result in the undesired formation 
of the phenol as side product.36, 47 When carried out in DMF in the presence of Pd2(dba)3 and two 
equivalents of sodium formate at 60 °C, adduct 76 was obtained in an excellent 95% yield. The great 
advantage of this approach becomes obvious as the reductive Heck cyclization not only serves to connect the 
A-ring with the C-ring of the alkaloid, and to elaborate the crucial quaternary center, it also establishes the 
ester side chain which serves as precursor for the nitrogen-containing moiety. 
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With a facile route to advanced intermediate 75 in hand, the stage was set for the completion of the 
carbon skeleton of galanthamine. The ester in 76 was converted in the requisite amide 75 and, the carbon 
skeleton of galanthamine was established by a Pictet-Spengler cyclization. Cleavage of the acetal 146 and 
reduction of the amide and the ketone then concluded the synthesis of the title Amaryllidaceae alkaloid. 
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Scheme 23. Xie and Zhou’s synthesis of (–)-galanthamine. 

 
One year after Xie and Zhou’s synthesis of (–)-galanthamine, Tae and co-workers also reported a 

synthesis of the title compound using a ring closing metathesis (RCM) reaction as one of the key steps.34 
While Tae used the metathesis reaction to elaborate the C-ring of the alkaloid, the aromatic moiety and the 
precursor for the C-ring were connected via the Heck reaction after initial coupling of both fragments by 
means of a Mitsunobu protocol. 

As outlined in Scheme 24, the sequence started with bromination of isovanillin (123) and subsequent 
reductive amination of the carbonyl moiety. Boc-protection of the nitrogen then released 81, which served as 
building-block for the A-ring of the galanthamine. 

The preparation of the coupling partner and synthon of the C-ring was carried out starting from the 
previously known epoxide 151.48 This material was converted to the secondary alcohol 82 via addition of 
dimethylsulfonium methylide to introduce the allylic alcohol moiety, MEM-protection, and oxidative 
cleavage of the PMB-ether. 

Next, the aryl bromide 81 and C-ring building-block 82 were connected through the Mitsunobu 
protocol affording 80, which corrected the stereochemical configuration at C-4a and prepared the substrate 
for the key RCM reaction to establish the C-ring of the alkaloid. The yield of this reaction, however, was 
found to be quite low, mainly because of the elimination of the homoallylic alcohol in substrate 82 with the 
concomitant formation of the corresponding, more stable, diene. Carefully controlled reaction conditions 
such as low temperature, use of Bu3P instead of Ph3P, and application of 1,1’-(azodicarbonyl)dipiperidine 
(ADDP) allowed the isolation of 80 in acceptable 60% yield. 
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Scheme 24. Tae’s synthesis of (–)-galanthamine. 

 
With bis-alkene 80 in hand, Tae and coworkers could carry out the envisaged RCM reaction with 

second-generation Grubbs catalyst 152 which delivered the desired product in excellent yield. Allylic 
oxidation with selenium dioxide in refluxing dioxane, followed by reaction with IBX proved to be the best 
choice of reagents as traces of the ruthenium catalyst used in the previous step turned out to be problematic 
in other, commonly used, methods. Reaction of enone 149 with ylide 153 then delivered exocyclic allyl 
alcohol 79 in good yield after reduction of the methyl ester. With this Wittig reaction, Tae and co-workers 
not only installed the double bond required for the intended palladium catalyzed Heck cyclization, the newly 
installed group also served as a precursor for the 7-membered heterocyclic C-ring of the alkaloid. 

Exposure of intermediate 79 to catalytic amounts of Pd(OAc)2 and 1,3-bis(diphenylphosphino)propane 
(dppp) and excess of silver carbonate in refluxing toluene afforded the desired cyclization product 150 after 
reduction of the intermediary aldehyde (via double bond shift during the Heck cyclization). 
With advanced intermediate 150 in hand, the synthesis of galanthamine was completed as planned. 
Mesylation of the primary alcohol was followed by cleavage of the Boc-group under acidic conditions, 
which simultaneously removed the MEM-ether. As the final step the aza-cycle was closed upon basification 
of the reaction mixture with sodium bicarbonate. 

Tae’s strategy differs from previously discussed endeavors as it is based on the elaboration of the C-
ring via the RCM reaction. Overall, the group presented a concise and efficient route to the Amaryllidaceae 
alkaloid. 

In 2013, Ojima and co-worker reported a formal synthesis of (–)-galanthamine.35 The route, shown in 
Scheme 25, is based on the application of a Pd-catalyzed asymmetric allylic etherification reaction and 
ultimately delivers an intermediate previously published by Trost and co-workers in 2005.36 

The route commenced with the preparation of allylic carbonate 86 from diol 154 via initial silylation of 
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the primary alcohol, followed by the reaction of the remaining hydroxyl moiety with vinyl chloroformate. 
With the starting material for the key asymmetric etherification in hand, Ojima and co-works carefully 
optimized reaction conditions for the Pd-catalyzed step. When allowed to react with phenol 85 in the 
presence of a palladium(II) species and chiral ligand 156, adduct 84 was obtained in excellent yield and 
enantioselectivity. 

The conversion to Trost’s intermediate proceeded uneventfully. The silyl ether in 84 was cleaved, 
followed by mesylation of the resulting primary alcohol and exposure to sodium cyanide. The Heck reaction 
then established the quaternary center and concluded the formal synthesis of galanthamine. 
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Scheme 25. Ojima’s formal synthesis of (–)-galanthamine. 

 
Jia and co-workers designed a synthesis of (–)-galanthamine based on the palladium-catalyzed Larock 

annulation reaction as the key step for the elaboration of the ABD ring system.37 This interesting strategy, 
significantly different from previously reported routes, required the installation and functionalization of the 
nitrogen-containing sub-unit at an early stage. The synthesis is outlined in Scheme 26. 

The known aldehyde 9036 was reacted with primary amine 9149 under reductive conditions and alkyne 
89, the precursor for the key palladium-catalyzed cyclization reaction was obtained after Boc-protection of 
the nitrogen. This alkyne was then exposed to a catalytic amount of [Pd2(dba)3]•CHCl3 and P(tBu)3•HBF4 
and excess potassium carbonate in DMF at 100 °C, which triggered the aforementioned key Larock 
annulation reaction and afforded tricyclic intermediate 88 in excellent yield after cleavage of the TES group. 
Oxidation of the enol ether with m-CPBA then delivered lactone 157. 

Next, the authors turned their attention to the construction of the chiral quaternary center. This task 
could elegantly be solved by means of an asymmetric Michael addition. Addition of methyl vinyl ketone to 
lactone 157 in the presence of chiral catalyst 162 and Sc(OTf)3 allowed the isolation of adduct 87 in good 
yield and excellent enantioselectivity (94% ee). 

With an enantioselective route toward 87 available, the stage was set for the completion of the 
galanthamine skeleton. Methyl ketone 87 smoothly cyclized under basic conditions and delivered 158. 
Reaction of the hemiketal in 158 with triethylsilane then afforded a mixture of 159 and 160 with 
simultaneous reduction of the ketone moiety and cleavage of the Boc-group. Protection of the nitrogen and 
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subjection of the mixture to the Dess-Martin periodinane (DMP) then provided ketone 161 which served as 
key intermediate in Fan’s synthesis of galanthamine.46 

The final task in the preparation of the natural product was the installation of the C-7 – C-8 double 
bond and the corresponding operations were carried out in analogy to Fan’s route.46 Ketone 161 was treated 
with LDA and trimethylsilyl triflate (TMSOTf) and the product was exposed to palladium acetate in 
acetonitrile. Stereoselective reduction of the ketone and subsequent conversion of the carbamate to the 
corresponding methyl amine completed Jia’s synthesis of the Amaryllidaceae alkaloid. 
 

 
Scheme 26. Jia’s synthesis of (–)-galanthamine. 

 
In contrast to his previous contribution, Banwell opted for the application of achiral ketone 96 as 

starting material and building-block for the C-ring of the alkaloid.38 The synthetic plan devised a de-novo 
construction of the aromatic A-ring of the alkaloid with a Diels-Alder reaction as one of the key steps. The 
route to racemic galanthamine is shown in Scheme 27. 

The initial phase of the synthesis was devoted to the construction of the tetrahydrofuran moiety and the 
preparation for the Alder-ene and subsequent Diels-Alder reaction. The installation of a benzoyl moiety in 
commercially available monoprotected diketone 96 was followed by the formation of the corresponding enol 
triflate under standard conditions. With this material in hand, the palladium-catalyzed cross coupling with an 
in-situ generated organoborane provided a mixture of benzoate 164 and secondary alcohol 165 in good yield. 
Hydrolysis of the benzoate in 164 increased the overall yield of the desired alcohol 165 and the material was 
converted to 166 via exposure to propargyl bromide, addition of paraformaldehyde to the deprotonated 
alkyne and acetylation of the resulting primary alcohol. Addition of palladium acetate to 166 then triggered 
the Alder-ene reaction and afforded tetrahydrofuran 94 in good yield. 

Next, Banwell and co-workers installed the diene required for the key Diels-Alder reaction to establish 
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the aromatic portion of the galanthamine. This was achieved simply by exposure of 94 to Pd((PPh3)4 and 
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) which provided diene 93 in excellent 85% yield. The 
cycloaddition reaction then proceeded smoothly and 167 was obtained with the correct regiochemical 
orientation of the carbonyl group as precursor for the methoxy functionality present in the galanthamine. 

Oxidation of the aldehyde moiety in 167, followed by saponification of the aryl formate delivered 168 
after alkylation of the free phenol. With advanced intermediate 168 in hand, the preparation of the natural 
product was concluded after the elaboration of the nitrogen heterocycle by means of a Bischler-Napieralski 
reaction. 
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Scheme 27. Banwell’s second synthesis of galanthamine. 

 
A chemoenzymatic synthesis of (+)-narwedine and (+)-galanthamine from phenethyl acetate 171 was 

reported by Hudlicky.39 The synthesis began with the whole cell fermentation of aromatic compound 171 
with E. coli JM109(pDTG601A), a recombinant organism developed by Gibson and overexpressing toluene 
dioxygenase.50 The cis-arene diol 100 was obtained in 80% yield ( >3-5 g/L, 30-50 grams in 10 L 
fermentor)51 and was subjected to a selective reduction with potassium azodicarboxylate (PAD) to provide 
the partially saturated diol 172, Scheme 28. Mitsunobu reaction of this material with bromoisovanillin 85 
furnished the aryl ether 99, whose Heck cyclization provided the tricyclic aldehyde 173. Reductive 
amination and protection led to the corresponding Boc-carbamate, which was converted to thiocarbonate 174 
in order to remove the C-5 hydroxyl group (galanthamine numbering). This process was accomplished under 
Barton-McCombie conditions to provide olefin 9 along with the fully saturated byproduct (not shown) in a 
4:1 ratio. Hydrolysis of the acetate gave 176, which formalized the synthesis of ent-galanthamine (+)-1.27 

The synthesis was further improved by changing some of the operations (Scheme 29). First, Boc-
carbamate 98 was prepared by the Heck cyclization of 177, derived by the Mitsunobu reaction of diol 100 
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with iodophenol 46, in which the aldehyde had already been subjected to reductive amination, as shown in 
Scheme 28. 
 

 
Scheme 28. Hudlicky’s synthesis of (+)-galanthamine. 
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Scheme 29. Hudlicky’s synthesis of (+)-galanthamine – modified route. 

 
Second, the deoxygenation protocol of the C-5 hydroxyl in 98 was replaced by an 

elimination/hydroxylation sequence. The conjugated diene 178 was converted to a mixture of diastereomeric 
acetates 179. Hydrolysis of both acetyl groups, followed by regioselective tosylation of the primary alcohol 
provided tosylate 97. Acid-catalyzed release of the side-chain amine led directly to the mixture of epimeric 
ent-galanthamines ((+)-1). Oxidation of this mixture provided ent-narwedine (+)-2, whose reduction gave 
ent-galanthamine (+)-1. 
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Late in 2016 Banwell40 reported the synthesis of racemic galanthamine in eleven steps from 
tosylamide 165, which is accessible in four steps from the commercially available mono-protected dione 96, 
Scheme 30. Mitsunobu reaction of previously reported allylic alcohol 16538 (for preparation see Scheme 27) 
with the isovanillin derivative 90 provided the aryl ether 180, which was subjected to the intermolecular 
Heck reaction to furnish 181. Detosylation of this material followed by reductive amination provided 
racemic narwedine (2), whose reduction gave racemic galanthamine in moderate 30% yield. 
 

 
Scheme 30. Banwell’s third synthesis of galanthamine – part 1. 

 
In a second-generation approach, outlined in Scheme 31 the location of the aldehyde and the methyl 

amine functionalities was “switched” as shown in acetal 102 obtained also by Mitsunobu reaction of the 
isovanillin derivative 90 with the allylic alcohol 103 followed by the Heck cyclization of aryl ether 102 to 
produce acetal-aldehyde 101. Reductive amination of the aryl aldehyde provided 182 and further reductive 
amination gave narwedine (2). 
 

 
Scheme 31. Banwell’s third synthesis of galanthamine – part 2. 

 

The ultimate improvement was realized converting acetal 103 to lactol 182, an intermediate used by 
Magnus30 in his synthesis of narwedine. Reductive amination of 182 provided narwedine in 48% over two 
steps. Reduction of narwedine then yielded racemic galanthamine. 
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5. Conclusion 
In this chapter we have provided a survey of recent syntheses of galanthamine. The interest of the 

synthetic community in this target has not waned, as indicated by the number of creative approaches to this 
alkaloid that were published during the last decade. We hope that this review will stimulate further interest 
in designing additional syntheses in the future. 
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