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Abstract. The fundamentals and recent developments of sulfonium salts applied to the synthesis of oxygen 
heterocycles are reviewed. The chapter is divided into five sections, starting with the presentation of 
sulfonium salts and the methods to prepare them; then, application of Pummerer reactions (chemistry of the 
thionium ion generated from sulfoniums) is discussed. The cyclization of other sulfur species, such as sulfur 
ylides, is also described. Finally, the use of sulfoniums as sources of electrophiles to induce cyclization and 
to functionalize oxygen heterocycles is described. 
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1. Introduction 

Sulfur is widely known in organic reactions; it is commonly used as the nucleophile in the production 
of thiols, sulfides and thioesters, among other functional groups. Further transformations of those functional 
groups have led to a considerable number of sulfur derivatives with well-established reactivity. In this 
context, the chemistry of sulfur IV species has recently been reviewed,1 and several previous discussions and 
reviews on organosulfur chemistry can be found in the literature.2 

Among the essential organosulfur derivatives or intermediates are sulfonium salts;3 these are 
compounds with three substituents on a charged sulfur atom, and the substituents are most commonly two 
carbon atoms and one heteroatom (O, Cl, I, and F, among others). However, salts with three carbon 
substituents are also common and widely applied in organic synthesis. 

The identity of the substituents governs the reactivity of the sulfonium salts. For example, 
heterosulfonium salts II are typically produced by the activation of sulfoxides I with electrophiles. In turn, II 
react with nucleophiles at the most electrophilic sulfur atom, yielding new sulfonium salts, III and IV 
(Scheme 1a). The reaction of II with bases will produce thionium ions V (Pummerer-type reactions). 
However, the reaction of carbon sulfonium salts IVa may provide ylides VI or sulfides VII depending on 
the reacting species (Scheme 1b). Finally, if one of the substituents is an unsaturated functional group, the 
reaction will proceed via conjugate addition, the equivalent of an allylic cation, generating ylides IX 
(Scheme 1c). 

The present chapter is devoted to the presentation and discussion of the applications of sulfonium salts 
in the synthesis of oxygen heterocycles by the direct cyclization of sulfonium or by the generation of 
thionium ions or other intermediates. The chapter is divided into five sections starting with the summary of 
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the methods for the preparation of sulfonium salts. Then, we describe some Pummerer-type cyclizations 
(intramolecular reaction of thionium ions) and the direct cyclization of sulfonium salts, followed by a 
description of the cyclizations induced by sulfonium salts as sources of electrophiles. Finally, the use of 
sulfonium salts in the functionalization of oxygen heterocycles is described. It is noteworthy that the review 
is not comprehensive, and the examples shown have been selected according to their significance and 
potential applications. 
 

   
Scheme 1. General reactivity of sulfonium salts. 

 
2. Preparation of sulfonium salts 

We previously mentioned two different types of sulfonium salts: heterosulfonium salts and        
carbon-sulfonium salts. Sulfoniums with one substituent different from carbon compose the first group; 
sulfoniums with oxygen, chlorine, fluorine and iodine, among others, are common species in the literature. 
However, not all of them have been applied to the synthesis of oxygen heterocycles. On the other hand, 
those heterosulfoniums serve as templates or precursors in the preparation of carbon sulfonium salts. 

Oxygen sulfonium salts are among the most used sulfoniums. Oxygen sulfonium salts are prepared by 
the in situ activation of a sulfoxide with an electrophilic reagent. The most commonly used are acetic 
anhydride, Ac2O, triflic anhydride, Tf2O, and trifluoroacetic anhydride, TFAA; the activation proceeds with 
the concomitant release of a negative counterpart, which serves as the counterion to the positive sulfonium. 

Halogen sulfoniums are prepared via substitution of the oxygen with halogens or directly from sulfides 
with halogenated electrophilic reagents. 

The reaction of any of those species (oxygen or halogen sulfoniums) with carbon nucleophiles will 
produce carbon-sulfoniums, which may be isolated; some of them are bench stable and easy to handle. 
Scheme 2 summarizes the methods for the preparation of sulfoniums. 
 

 
Scheme 2. Preparation of sulfonium salts. 
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3. Pummerer-type cyclizations 

The reaction of a sulfonium with a base produces a highly reactive electrophilic intermediate called a 
thionium. Reactions of thionium ions with nucleophiles are called Pummerer-type reactions, and they have 
been extensively reviewed in the literature.4 

The intramolecular reaction of a thionium with a nucleophile affords a cyclic compound, which can be 
the intermediate in a subsequent process or the final product. Most commonly, the product is an intermediate 
in reactions that produce sulfur-containing heterocycles (Scheme 3a). While, compounds with an exocyclic 
sulfur are commonly used in further transformations to yield desulfurized final products (Scheme 3b). 
 

 
Scheme 3. Traditional Pummerer cyclizations. 

 
3.1. Intramolecular cyclizations with oxygen nucleophiles 

The reaction of oxygen nucleophiles (alcohols or phenols) with sulfonium salts mainly occurs at the 
more electrophilic sulfur atom; however, the reaction with basic species will generate a thionium 
intermediate. This new electrophile reacts intramolecularly with nucleophiles, producing cyclic compounds. 
Applications of that reactivity in the synthesis of heterocycles were reviewed some years ago.5 

Carbonyl groups have served as nucleophiles, producing saturated, unsaturated and aromatic 
heterocycles. Works by Kumamoto and coworkers,6 and Bruke and coworkers7 describe the use of 
carboxylic acids as nucleophiles. The sulfoxide 1 is activated by acetic or trifluoroacetic anhydride, 
generating the sulfonium intermediate. Then, the thionium 2 is formed by the action of the acetate and then 
reacts with the nucleophilic acid, forming the five-membered ring lactone 4. Equilibration in acidic medium 
produces the thermodynamically favored 3,5-trans product, regardless of the substitution pattern (Scheme 
4). 
 

 
Scheme 4. Synthesis of bicyclic lactones via Pummerer cyclization. 
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In the same way, carboxylates produce lactones, as demonstrated by Marino et al.8 In this case, the 
formation of the thionium is quite different (additive Pummerer reaction). The vinyl sulfoxide 5 reacts with 
dichloroketene forming a sulfonium 6. In turn, 6 undergoes a [3,3]-sigmatropic rearrangement, generating 
the thionium 7, which has the nucleophilic oxygen in suitable place to produce the lactone 8. This reaction 
has been performed with enantiopure sulfoxides, yielding enantioenriched lactones. In that context, the same 
transformation was applied in the total synthesis of (-)-physostigmine,8c (+)-aspidospermine,8d and              
(-)-methyl jasmonate (Scheme 5).9 
 

 
Scheme 5. Additive Pummerer reaction in the synthesis of lactones applied to natural products. 

 
Padwa et al. used the same principle in the synthesis of lactams by using sulfilimides 9 instead of 

sulfoxides (Scheme 6a).10 Interestingly, the carboxylate ion reacts via the nitrogen atom and not via the 
oxygen, which is more usual, as shown by Padwa et al. (Scheme 6b)11 in the synthesis of the Erythrinane 
skeleton and by Zhou and coworkers in the synthesis of oxazoles (Scheme 6c).12 In Padwa’s work, the 
sulfoxide 11 is activated with acetic anhydride, and the thionium reacts with the nucleophilic oxygen 
yielding the isobezofuran 12, that is the intermediate in the construction of more complex skeletons. On the 
other hand, a similar approach was described by Zhou using conjugated thioniums 14 to afford oxazoles 15. 
 

 
Scheme 6. Pummerer cyclization of amides. 
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sulfoxides 16 using oxalyl chloride, thus generating a chlorosulfonium salt 17. Then, 17 produces the 
intermediate thionium 18, which is spontaneously trapped by chlorine, yielding the -chlorosulfide 19. 
Subsequently, 19 cyclizes by the action of the base, providing oxazolines 20. When the substituent is 
chlorine, it may be eliminated, generating the oxazole 21. Similar approaches using the activation of sulfides 
with N-chlorosuccinimide (NCS) have been previously described.14 
 

  
Scheme 7. Activation of sulfoxides with (COCl)2, and their application to the synthesis of oxazoles 

and oxazolines. 
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Scheme 8. Use of aldehydes and ketones in Pummerer cyclizations. 
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al.19 shows the formation of the 1,3-benzoxathiine 37. The activation of sulfoxide 35 is accomplished by 
TBSCl, generating the sulfonium salt 36. It is still unclear if the next step is the formation of a thionium ion, 
an -chloro-sulfide or another sulfonium salt. Any of those intermediates will produce the cyclized product 
by reacting with the nucleophilic alcohol (Scheme 10a). A similar approach was described by Raghavan and 
coworkers20 They used the acyclic substrate 38, which is activated by TBSCl, to form the sulfonium salt 39. 
A comparable cyclization should occur since the tetrahydrofuran 40 is obtained in good yield. It should be 
noted that the reaction proceeds with high stereoselectivity for the new chiral center (Scheme 10b).    
Gamba-Sánchez and Prunet (Scheme 10c) used a slightly different approach.21 They used a benzylidene 
acetal, 1,3-dioxane 41, to mask the active oxygen, thus enabling the activation with a highly electrophilic 
reagent; acidic treatment produced the desired tetrahydrofuran 43 with excellent stereoselectivity (Scheme 
10c). The product is obtained without the sulfur moiety since the reaction passes through the formation of an 
intermediate aldehyde 43. 
 

 
Scheme 9. Michael-Pummerer reaction. 

 

 
Scheme 10. Cyclizations using OH nucleophiles. 
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Scheme 11. Application in the synthesis of the D-E bicyclic system of Erinacine E. 

 

 
Scheme 12. Enols as nucleophiles in Pummerer cyclizations. 
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Scheme 13. A successful Pummerer-Aldol-type reaction. 

 

 
Scheme 14. Use of water as a source of nucleophilic oxygen. 

 

 
Scheme 15. Phenols as nucleophiles in the aromatic Pummerer reaction. 
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Scheme 16. Tandem interrupted Pummerer-sigmatropic rearrangement. 
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Scheme 17. Iterative synthesis of oligoarenes. 
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product is a 2,3-disubstituted benzothiophene 91 with the phenol moiety in position 3. Depending on the 
group in position 2, lactones (e.g. compound 92) can be obtained.33 
 

 
Scheme 18. Use of benzothiophene instead of acyclic vinyl sulfides. 

 

 
Scheme 19. Other oxygen heterocycles from substituted benzothiophenes. 
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We start our discussion with the work reported by Ikeda and coworkers.34 They used a particular 
sulfoxide 95, which can be seen as a 1,3-dicarbonyl compound with singular features, for example, the 
enolate form should exist in solution, thus making the  position nucleophilic, which may also stabilize a 
thionium ion. As a consequence, its formation should be more favoured, and less electrophilic activators 
should be used. The authors demonstrated that the cyclization might occur by activation of the sulfoxide 
with p-TsOH. Unfortunately, a mixture of regioisomers 96a and 96b was obtained due to the nucleophilic 
positions on the aromatic nucleophile. The same result was obtained when the -chlorosulfide 94 was 
treated with SnCl4, thus suggesting that both reactions proceed by the formation of the intermediate thionium 
97. This thionium is also formed by the action of the electrophilic NCS on the sulfide 93. In other words, the 
first step is the formation of a chlorosulfonium salt from 93 or the formation of an oxygen sulfonium salt 
from 95. Both readily undergo elimination to produce the thionium intermediate 97, which is trapped by the 
nucleophilic chloride when NCS is used or by the nucleophilic aromatic ring in the absence of other 
nucleophiles (Scheme 20). The yield of the cyclization is approximately 50%. 
 

 
Scheme 20. Carbon nucleophiles in the cyclization of thioniums. 

 
Recently, Gamba-Sánchez and coworkers studied this type of cyclization in more detail.35 They 

unveiled a new sort of reactivity of chlorosulfonium salts. As we showed earlier in this chapter, the typical 
reactivity of chlorosulfonium with oxygen nucleophiles is on the more electrophilic sulfur atom. In this case, 
however, the oxygen nucleophile reacts on the chlorine atom or does not react, which is dependent on the 
nucleophilic species in the reaction mixture. Scheme 21 exemplifies the mentioned reactivity. The sulfoxide 
98 is activated with oxalyl chloride (COCl)2, forming the chlorosulfonium 99. When strong nucleophiles are 
used as substrates (e.g. m-MeO groups on the aromatic), the reaction proceeds by intramolecular 
chlorination, yielding chlorosulfides 102. However, if the aromatic is less nucleophilic, the reaction will 
produce the -chlorosulfide 100, which eventually allows the formation of a thionium, 101a, and subsequent 
cyclization. Both reactions are competitive and highly dependent on the substrate. 
 

 
Scheme 21. Reaction of chlorosulfonium with nucleophilic aromatics. 
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The authors were able to apply the cyclization to a significant number of substrates, including some 
with chiral centers near the sulfur 101b. The thioniums produced chromanes and the aminochromane 103, 
which may be reduced to yield compounds without the sulfur moiety 104. Scheme 22a shows some 
examples that illustrate the structural diversity reached, including the cyclization with substrates wearing 
strongly deactivating groups. Intramolecular chlorination was recently extended to the reduction of highly 
functionalized sulfoxides36 following the same principle. The general features of this reaction are presented 
in Scheme 22b. 
 

 
Scheme 22. Cyclization with carbon nucleophiles and the reduction of sulfoxides. 

 
A similar approach was used by Takano et al. in the total synthesis of (-)-Aphanorphine. Scheme 23 
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the sulfonium 106, which readily eliminates to form the thionium 107. The cyclization to 108 is promoted by 
the high nucleophilicity of the aromatic ring; as we mentioned previously, deactivated aromatics are less 
reactive, and consequently, it is hard to achieve cyclizations. Further transformation leads to the synthesis of 
(-)-aphanorphine. 
 

 
Scheme 23. Application in the synthesis of Aphanorphine. 
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Kita and coworkers37 used an aromatic Pummerer reaction in the synthesis of neolignanes and applied 
the methodology to the synthesis of liliflol and kadsurenone. Scheme 24 summarizes the reaction mechanism 
and explains the aromatic Pummerer reaction. The phenol sulfoxide 109 was activated without acylation 
using acetic anhydride. The formation of thioniums usually requires providing protons  to the sulfur. In this 
case, conjugate elimination on 110 produced the quinone thionium 111, which undergoes nucleophilic 
addition of the akene 112 (a pericyclic mechanism is a plausible alternative), leading to the formation of a 
cationic intermediate 113 that cyclizes to 114. Aromatization and, in some cases, further functionalization let 
the authors obtain several natural products. 
 

 
Scheme 24. Aromatic Pummerer reaction with carbon nucleophiles. 
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Scheme 25. General reaction of vinyl sulfoniums. 

 
Scheme 26 shows Feldman’s approach to the synthesis of spirocycles. The indole sulfide 115 is 

activated with PhI(CN)OTf, producing the iodo-sulfonium 116. The same salt may be obtained from the 
corresponding sulfoxide. However, the activation of the sulfoxide proceeded with more difficulty, and 
consequently, lower yields were obtained. Then, the iodo-sulfonium 116 spontaneously cyclizes producing 
the thionium 117, which leads to the spirocycle 118 by the action of a base. The authors studied the effects 
of several solvents. Unfortunately, the yield could not increase over 40%. Therefore, when carbamates (e.g. 
NHBoc) were used instead of the N3 group, the cyclization occurred with the carbamate moiety. 
 

 
Scheme 26. Feldman’s approach to spirocycles. 
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with the electrophilic aldehyde. The epoxidation of 127 by a SN2 mechanism with the liberation of the 
sulfide produces the heterocycle 128. Scheme 27c illustrates the variety of substrates that can be used. 
Additionally, this Scheme shows that an excellent enantiomeric excess can be achieved when using the 
nonracemic salt 124. The effects of substrates and salts were studied by the same group, providing in-depth 
insights into the reaction pathway.40 
 

 
Scheme 27. Epoxidations with sulfoniums described by Aggarwal. 

 
A remarkable extension of the previously shown work is sulfur ylide-mediated three-component 

epoxidation.41 In this case, the reaction mixture is composed of the sulfonium salt 121, the nucleophile and 
the aldehyde 131. Thus, the first addition (nucleophile to the sulfonium) will generate the ylide, which may 
add to the carbonyl compound and then promote cyclization to the epoxide 132 (Scheme 28 for the 
structures of products that can be obtained using this methodology). 
 

 
Scheme 28. Three-component epoxidation via sulfur ylides. 
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hemiaminal 133 is in equilibrium with its open isomer 134. The latter may react with the vinyl sulfonium 
121, producing the ylide 135. As usual, the ylide cyclizes to yield the sulfonium 136, which reacts in an 
intramolecular nucleophilic substitution, leading to the formation of the epoxiazepine 137 (Scheme 29a). 
The primary hypothesis was that the chiral centers at positions 2 and 3 to the nitrogen should induce some 
stereochemistry on the oxygen and sulfur substituents on the azepine 136, thus making the formation of the 
epoxide completely stereoselective. A careful analysis of products allowed the authors to propose the 
stereochemical outcome (Scheme 29b); the group at position 2 should induce the formation of the cis 
epoxide 137 since the transition state is favorable in energy. On the other hand, the experimental results 
showed a prevalence for the cis product, which unfortunately led to the 2,5-trans product 139 after epoxide 
opening (Scheme 29c). This product has the wrong stereochemistry for natural products. Consequently, 
further investigations are needed to apply this methodology to their synthesis. 
 

 
Scheme 29. Synthesis of epoxy-azepines. 
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Scheme 30.43 Unfortunately, in all cases, the yields dropped compared with the use of vinyl sulfoniums. The 
same happened with the diastereoselectivity as well as the enantiomeric excess. 
 

 
Scheme 30. Other sulfoniums that induce epoxidations. 
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Scheme 31. Synthesis of epoxy-pyrans. 
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Scheme 32. Use of substituted sulfoniums in the synthesis of epoxy-pyrrolidines. 
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morpholine 150. Scheme 33b shows the general reaction and some of the structures obtained by Aggarwal 
and coworkers. 
 

 
Scheme 33. Synthesis of morpholines with vinyl sulfoniums. 
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affords excellent regio- and stereoselectivity for morpholines. Unfortunately, the use of 155 showed poor 
regioselectivity and an entire lack of stereoselectivity. 
 

 
Scheme 34. Synthesis of other oxygen heterocycles by using vinyl sulfoniums. 

 
In 2009 Liu and coworkers51 published the use of aromatic carbamates 156. They were able to obtain 

cyclic carbamates 159 by using the vinyl sulfonium 121. The reaction starts, as usual, by the addition of the 
nitrogen nucleophile to produce the ylide 157. Then, 157 is protonated to form the new sulfonium 158, 
which cyclizes with the concomitant loss of isoprene to afford the cyclic carbamate 159. Using this method, 
the authors obtained a significant variety of carbamates with aromatic, heteroaromatics and alkenyl groups 
as substituents (Scheme 35). The use of amides instead of carbamates only afforded minimum quantities of 
lactones.52 
 

 
Scheme 35. Synthesis of cyclic carbamates with from vinyl sulfoniums. 
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Thus far, we have discussed the use of N,O-bis nucleophiles. Even though the use of X,O-bis 
nucleophiles is rare, Yan, Mao and coworkers53 described a remarkable example. They showed the 
construction of oxygen heterocycles (coumarins and hydrofurans) by using naphthols and enols as C,O-bis 
nucleophiles. Scheme 36 summarizes Yan and Mao’s results and provides a plausible reaction mechanism. 
The reaction of phenols, naphthols or hydroxycoumarins with 121 will produce ylides 160, and then, as 
usual, the formation of a second sulfonium 162 is promoted by the presence of an acidic proton. The 
intermediate 162 will afford the hydrobenzofuran 163. 
 

 
Scheme 36. Use of C,O-bis nucleophiles with vinyl sulfoniums. 

 
The reactions of vinyl sulfoniums to produce oxygen heterocycles have been covered in this section. 

However, it is clear that carbon-sulfoniums have three reactive (electrophilic) positions, and their reaction 
with nucleophiles depends on the stability of the sulfide formed. In the next section, we discuss a couple of 
works where the sulfoniums induce the cyclizations by the donation of an electrophile. 
 
5. Sulfonium salts as electrophile sources: induction of cyclization 

Sulfonium salts are known to be electrophile sources, and the typical example is Umemoto’s 
trifluoromethylation reagent(s).54 These reagents are trifluoromethyl sulfonium salts, and their preparation 
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iodonium salts56 or the direct reaction of sulfoxides with Grignard reagents,57 among others. The examples 
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In 2014 Akita, Koike and coworkers58 described a diastereoselective tandem          
trifluoromethylation-lactonization of alkenyl carboxylic acids using Umemoto’s reagents. The reaction 
proceeds by the donation of the trifluoromethyl group to the nucleophilic double bond of reagent 164, 
producing a cationic intermediate, 165, that directly reacts with the carboxylic acid forming the lactam 166 
(Scheme 37a). The reaction is performed in the presence of [Ru(bpy)3](PF6)2 as a photocatalyst and visible 
blue light. The authors demonstrated that the reaction did not proceed in darkness or without the catalyst, 
thus suggesting a SET transfer mechanism, which provides the cationic species in a more complex 
procedure, which means the trifluoromethyl radical adds to the alkene and the formed radical donates an 
electron to regenerate the catalyst and produce the intermediate cation. It is noteworthy to mention that all of 
the substrates have at least one aromatic group (or a tertiary carbon) to stabilize the cation. Scheme 37b 
shows the variety of products obtained and that the reaction may be extended to the synthesis of six and 
seven-membered rings. Additionally, the authors proposed an energetic differentiation between transition 
states that explains the isolation of exclusively endo products with excellent trans selectivity (Scheme 37c). 
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pyrrole, thus generating a cationic intermediate, which, upon reaction with the free OH, affords the cyclic 
compound 171. The authors were able to obtain hydrofurans, lactones and hydropyrans (Scheme 38). 
 

 
Scheme 37. Trifluoromethylation-cyclization using Umemoto’s reagent. 

 

 
 

Scheme 38. Alcarazo’s cyanation-cyclization. 
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the electrophilic sulfur instead of with the electrophilic substituent;60 therefore, the new sulfonium 
underwent a Negishi-type cross coupling. When the second step is intramolecular, oxygen heterocycles are 
obtained. A formal evaluation of this reaction let us understand the entire process as the umpolung of 
unsaturated functional groups. Scheme 39 shows the simplified reaction mechanism and the oxygen 
heterocycle obtained. It has to be noted that this is one of the infrequent examples in which a sulfoxide is 
used as a catalyst. We discuss this reaction with more detail in the next section. 
 

 
Scheme 39. Interrupted Pummerer reaction with alkenes as nucleophiles. 

 
The umpolung of the unsaturated functional group was also achieved by Procter using the phenol 172 
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(enolates), thus, yielding the cycle precursor that forms in situ (Schemes 40b and 40c). 
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functionalization of complex molecules is continuously growing, and among them, photocatalysis has 
demonstrated excellent results. 
 

 
Scheme 40. Phenol umpolung induced by sulfoniums. 

 
Sulfonium salts have been used as sources of electrophiles as well as radical precursors, usually 

promoted by photocatalysis. The radicals might be stabilized, and their reaction allows the late-stage 
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which is important since fluorinated molecules are usually more biocompatible (good balance between lipo- 
and hydro-solubility). Additionally, if the fluorine is at the correct position, those molecules are more stable 
for metabolic transformations. 
 

 
Scheme 41. Photocatalytic oxygenation of sulfoniums. 

 

 
Scheme 42. Photocatalytic trifluoromethylation of sulfoniums. 

 

176 177 178

Ar

Ar-TT

[IrIII]

[*IrIII]

[IrII]

TT

TT

[CuIIOH]

CuI + H2O

[CuIOH]

[Ar-CuIII-OH]

ArOH

hv

oxidative
ligation

Ar

reductive 
elimination

S

S

S

S
O

F

F

F

F

PF6

a.

TT/TFT OHTFAA, HBF4
TT-SO

Ir   + [CuI]+ H2O

blue LED
R R R

O

OH
O

N

OO

Et

O
OH

O
O

OAc
OAc

AcO
AcO OAc

O
OH

Me
O

b.

N

N

t-Bu

t-Bu

Ir

N

N

F

F

F

F
CF3

CF3

TT:

TFT:

[Ir]

HO

BF4

[PCn] [+PCn]

[PCn-1]

ArAr-TT

Ar-TT

C-S 
bond fragmentationSET

reductive
quench

photo
excitation

a.

CuIICF3

SET

CuICF3

Ar
oxidative
ligation

Ar-CuIII-CF3

reductive
elimination

Ar-CF3

Cu(I)
TMSCF3

CsF

2PF6

N

N
Ru2+

N

N

N

N

Ru

b. R

H

TFAA, HBF4
.Et2O

TT-SO

R

CF3

R

TT/TFT

BF4 Ru   MeCN, 30°C
blue LED

[CuCF3] in DMF

F3C O

O

I

I

O

NEt2

O

CF3

O

O
O

OAc
OAc

AcO
AcO OAc

CF3

nBu



202 
 

In this context Ritter and coworkers64 developed a late-stage fluorination method that allowed the 
regioselective functionalization of aromatics with an excellent functional group tolerance and a wide 
substrate scope. 

The concept of the reaction was presented in the previous paragraphs. The main difference with the 
previously described methods for oxygenation or trifluoromethylation is the use of a copper species. Scheme 
43 shows the particular features of this reaction and the oxygen heterocycles that were effectively 
fluorinated. 
 

 
Scheme 43. Photocatalytic fluorination of sulfoniums. 
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electrophiles was discussed during this chapter, mostly in cyclization reactions; nevertheless, the reactions 
with cyclic compounds as nucleophiles are also known, and functionalizations of oxygen heterocycles have 
been achieved. 
 

 
Scheme 44. Photocatalytic cross-coupling using sulfoniums. 
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sulfoniums in situ, and the aromatics acted as nucleophiles substituting the triflate group. The role of the 
diethylamine is to react as a nucleophile with one of the substituents to produce the trifluoromethyl sulfides. 
The choice of sulfoxides 185 and 188 is made to generate more reactive (electrophilic) positions, thus 
increasing the chemoselectivity in the reaction with the amine. 
 

 
Scheme 45. Metal catalyzed amination of sulfoniums. 

 

 
Scheme 46. Trifluormethylthiolation mediated by sulfonium salts. 

 
When one of the sulfonium substituents is an aromatic, it may have conjugate additions, as we 

discussed previously (aromatic Pummerer reaction). However, reactions on the electrophilic sulfur are also 
possible. The final reactivity is dependent of the sulfonium substituents and the used nucleophile. Two 
examples are presented. The first one was reported by Procter and coworkers71 in 2016, and it is based on the 
reactivity on the sulfur atom with aromatics 176 as nucleophiles. The activation of the sulfoxide 191 with 
triflic anhydride will generate a sulfonium, which reacts with the aromatic to yield sulfonium 192. This 
sulfonium, upon treatment with DBU, produces sulfide 193 (Scheme 47). 
 

 
Scheme 47. Synthesis of sulfides mediated by sulfonium salts. 
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trap the electrophilic methyl group (Scheme 48). 
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Scheme 48. Reductive metal-free coupling of sulfur derivatives. 

 
7. Conclusion 

In summary, we have presented and discussed the major uses of sulfoniums salts in the synthesis and 
functionalization of oxygen heterocyclic compounds. We hope that the readers will find this chapter useful 
in connection with the variety of chemistry that can be performed with sulfonium salts. Likely, the near 
future will provide the scientific community with new developments and applications of sulfoniums, 
compounds that are very versatile and their chemistry is continuously growing. 
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