

SCUOLA DI RICERCA EDUCATIVA E DIDATTICA CHIMICA "ULDERICO SEGRE" XIV edizione, 16-25 novembre 2022

in ricordo di Antonio Floriano

Elettrochimica: la grande protagonista della transizione energetica

Catia Arbizzani

Alma Mater Studiorum – Università di Bologna Dipartimento di Chimica "Giacomo Ciamician"

SOMMARIO

Case study: studentessa di Chimica (Catia Arbizzani)

- > Transizione energetica e il ruolo dell'elettrochimica
- Fotovoltaico e DSSC
- ➢ Batterie Li-ione e litio
- > Idrogeno
- Celle a combustibile
- Corrosione
- > Risparmio energetico
- Take-home messages
- ➢ Ringraziamenti

Transizione energetica

ALMA MATER STUDIORUM INIVERSITÀ DI BOLOGNA

Riduzione delle emissioni di carbonio nello Scenario 1,5 °C (%)

Copyright © IRENA 2021 www.IRENA.org

Riduzione delle emissioni di carbonio nello Scenario 1,5 °C (%)

Abbattimenti

Copyright © IRENA 2021 www.IRENA.org

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal it

MOBILITA ELETTRICA VEICOLI ELETTRICI EFFICIENZA BATTERIE RICARICABILI EOLICO ACCUMULO ELETTROLETTROCHINCO IDROGENO CELLE A COMBUSTIBILE ELETTROLIZZATORI RETE ELETTRICA ELETTRIFICAZIONE FOTOVOLTAICO

Fotovoltaico e DSSC

www.nrel.gov/pv/cell-efficiency.html

ALMA MATER STUDIORUM

Fotovoltaico e DSSC

SwissTech Convention Center a EPFL (Losanna)

https://commons.wikimedia.org/wiki/File:Dye_Sensitized_Solar_Cell_Scheme.png

Cosa cambierà?

Source: IEA. International Energy Agency Website: www.iea.org

Emissione di CO₂ nel ciclo di vita dei veicoli

I veicoli elettrici sono più efficienti dal punto di vista energetico rispetto a quelli alimentati con combustibili fossili

Le fonti per la produzione di energia elettrica diventano importanti per le emissioni di CO₂

https://www.eea.europa.eu/it/segnali/segnali-2017-definire-il-futuro/infografica/panoramicasulle-emissioni-di-co2/view

Nota: i valori sono calcolati prendendo in considerazione un veicolo di classe media su una distanza complessiva di 220 000 km. Fonte: TNO, 2015; calcoli dell'autore.

A che punto siamo con la tecnologia?

Vetture circolanti (mila)						
	Italia	Francia	UK	USA		
1912	15	-	-	700		
1922	41	-	-	8200		
1932	188	1298	1150	20832		
1956	1030	3060	3980	54210		
2018	38800 (2	256 EV, 0.6	56%)			

1972, FIAT X1/23

80 km, 70 km/h

1997, Toyota Prius (HEV)

ORRENT

Renault Zoe

ALMA MATER STUDIORUM

Batteria al piombo 1859 Pb/H₂SO₄/PbO₂

Batteria NiMH

1989

MH//NiO(OH)

Battery **Specific Energy** Energy density cell voltage Wh kg⁻¹ Wh L⁻¹ V **Pb-acid** 2.0 35-40 80-90 1.2 60-120 140-300 Ni-MH Li-ion 3.2-4.0 250-650 150-300

Cella Li ione

Q

enelooj eneloop

C 12 V min. 1900 mAh Orac AA

12 V min 750 mits ORED AAA

Sony, 1991

15

Comparison among batteries: which are the parameters?

https://chargedevs.com/newswire/nissan-leaf-batteries-should-last-22-years/

Specific energy - **Specific power**

Energia e Potenza

0,18 kWh/km

Auto	Energia kWh	Percorrenza km			
Nissan Leaf					
2007-2016	24	100-160			
2017-	40	270			
2019	62	375			
Tesla					
Model S	75-100	490-632			
Roadster 2019	200	1000			

I Supercharger Tesla garantiscono fino a 270 chilometri di autonomia con soli 30 minuti di ricarica.

Tecnologia basata sul litio

UNIVERSITÀ DI BOLOGNA

Come può essere ottimizzata una batteria? Materiali...

Source: Arthur D. Little

Come può essere ottimizzata una batteria?e processi

Source: Arthur D. Little

J Solid State Electrochem (2017) 21:1939–1964

Integrated SET-Plan Action 7

~ Implementation Plan ~

"Become competitive in the global battery sector to drive e-mobility and stationary storage forward"

	Gen	anode	cathode	Energy Wh/kg
2050 ?	5	Li metallico	aria	750-1000
2030	4	Li metallico Li metallico (stato solido)	zolfo NCM- catodi ad alto potenziale	500-750
	3b	Si-grafite	NCM-catodi ad alto potenziale	400-450
2020	За	grafite+5-10% Si	NCM (622 to 811)	350
,	2b	grafite	NCM (523 to 622)	300
	2 a	grafite	NCM (111)	250
	1	grafite	LFP, NCA	100-250

Category	Lithium	Sodium
Atomic weight (g mol ⁻¹)	6.9	23
Cation radius (Å)	0.76	1.06
E° (V vs. Li/Li⁺)	0	0.3
Capacity (mAh g ⁻¹), metal	3,829	1,165
Cost (\$/ton), carbonates	12,600	200
Current collector (anode)	Cu	AI
Distribution	70 % in South America	Everywhere
Abundance	20 mg kg ⁻¹	23.6 g kg ⁻¹

Esiste una alternativa al litio?

K. Kubota et al., MRS BULLETIN, 39, 2014, 416 Copyright © Materials Research Society 2014

Reproduced from S. F. Schneider et al., Sustainable Energy & Fuels 2019, 3, 3061–3070 with permission from the Royal Society of Chemistry.

Esiste una alternativa al litio?

а

with permission from the Royal Society of Chemistry.

Esiste una alternativa al litio?

https://www.startengine.com/blue-sky-energy

Y. Zhang et al., J. Power Sources 400 (2018) 478

Sono le celle a combustibile una alternativa alle batterie Li-ione?

Source: US D.O.E., Office of energy efficiency and renewable energy

https://www.volkswagenag.com/en/news/stories/2019/08/hydrogen-or-battery--that-is-the-question.html

Celle a combustibile microbiche

Santoro et al., J. Power Sources 2017, 356, 225-244

I. A. Ieropoulos et al., Environ. Sci.: Water Res. Technol., 2016, 2, 336

Santoro et al., J. Power³³Sources 2017, 356, 225-244

Catalizzatori a base di metalli nobili (PGM)

J. C. Meier, et al., J. Nanotechnol., 2014, 5, 44–67.

Costo elevato Scarsità metalli nobili Facilmente avvelenabile

Catalizzatori PGM-free

Activated Carbon

Materials Today Advances, 13 (2022)100208

- Costo molto basso
- 🗆 Abbondanti e disponibili
- Resistenti all'avvelenamento

Corrosione

<u>Enorme impatto economico</u>: circa un quinto della produzione annuale di acciaio è destinata alla sostituzione di parti danneggiate dalla corrosione.

Una corretta ed efficace protezione anticorrosione alla fonte contribuisce a risparmiare denaro e risorse a lungo termine.

<u>Sicurezza</u>: un cedimento dovuto alla corrosione potrebbe avere conseguenze drammatiche.

Il processo di corrosione può essere descritto come lo svolgimento simultaneo, alla superficie metallica, di due processi elettrochimici, l'uno che dà luogo ad una corrente anodica e l'altro ad una catodica.

Come si può risparmiare energia?

37

Ottimizzando il ciclo di vita dei prodotti

Risparmio energetico

Comunicazioni

Controllo

Aumento connettività Apparecchiature di rete

Intrattenimento

2:1 rapporto tra dispositivi connessi e popolazione mondiale

50 miliardi di dispositivi (2020)**500 miliardi** entro 2050

80% energia utilizzata dai dispositivi per mantenere la connettività

615 TWh energia elettrica consumata da dispositivi connessi (2013)
(T = tera = 10¹² = mille miliardi)

740 TWh* energia risparmiata (2025) ottimizzando la tecnologia e l'utilizzo *equivalente all'energia elettrica consumata da FR e UK

www.iea.org/etp/networkstandby

CONCLUSIONI

Ruolo chiave delle elettrochimica per la transizione energetica e per lo sviluppo di nuove tecnologie (batterie, elettrolizzatori, celle a combustibile...).

La **conoscenza elettrochimica** porterà a **sviluppi di nuovi materiali e nuovi processi** per diminuire l'impatto ambientale delle nuove produzioni con l'utilizzo di energie rinnovabili sia per la produzione che per il riciclo. **Forte interazione con altre discipline.**

Il **potenziamento dell'insegnamento** dell'**elettrochimica** a tutti i livelli porterà grandi vantaggi per affrontare al meglio i cambiamenti che avverranno nel prossimo futuro...

...e una **buona lettura** stimolerà gli animi.

Prefazione di Piero Angela

Firenze University Press

Ringraziamenti

Prof. Sergio Roffia

Docente del Corso di Elettrochimica AA 1983/1984

Prof. Marina Mastragostino Dal 1984 ad oggi

Gruppo di ricerca LEME <u>https://site.unibo.it/leme/en</u>

Grazie per l'attenzione

