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An useful exercise which can be
proposed to students involved in
elementary quantum chemistry is the
calculation of average values of
observables, with the aim to make the
study of the theoretical chemistry less
abstract and students more familiar
with actual calculations of quantum
integrals. Moreover, a suitable choice of
the average values to be calculated can
help to get more insight in important
concepts of quantum chemistry, like the
Heisenberg uncertainty principle.
It is opportune to propose some
examples where the wavefunction is
simple enough to easily calculate the
average values.
Let us take, as a first example, the
particle in a monodimensional box of
length a, whose real wavefunction is
ψ

k
 = (2/a)1/2sin(kx)

with k = nπ/a,  n = 1,2,3,...[1]
Let us calculate the average values of
x, x2, p

x
 and p

x
2, that is the integrals :

〈x〉  = 〈ψ
k
 xψ

k
〉 ,  〈x2〉 = 〈ψ

k
 x2ψ

k
〉,

〈p
x
〉  = 〈ψ

k
 -ihd/dxψ

k
〉 ,

〈p
x

2〉  =  〈ψ
k
 -h2d2/dx2ψ

k
〉 .

〈x〉  = 〈ψ
k
 xψ

k
〉  = (2/a)ò

 
 xsin2(kx)dx.

Making the change of variable kx = t,

〈x〉  = (2/ak2) ò  
  tsin2tdt.

The indefinite integral of tsin2t is the
function t2/4 - tsin(2t)/4 - cos(2t)/8  [2],
and remembering that ka = nπ,
we obtain 〈x〉  = (2/ak2)(k2a2)/4 = a/2.

〈x2〉=〈ψ
k
 x2ψ

k
〉 = (2/a)ò  x2sin2(kx)dx=

 = (2/ak3)ò
 
 t2sin2tdt.

Being the integral of t2sin2t the
function t3/6 -(t2/4 -1/8)sin(2t) +
-tcos(2t)/4  [2], we obtain
〈x2〉  = (2/ak3)(k3a3/6 - ka/4) =
= a2/3 - 1/2k2 = a2(1/3 - 1/2n2π2).

〈p
x
〉  = 〈ψ

k
 (-ihd/dxψ

k
〉  = (2/a)(-ih)

òsin (kx)kcos(kx)dx=(-2ih/a)

ò sintcostdt = (-2ih/a)[sin2t/2 ]
0
π = 0.

GIANFRANCO LA MANNA (*)

(*) Dipartimento di Chimica Fisica,
Viale delle Scienze - 90128 Palermo,
Italy
lamanna@unipa.it

AN EXERCISE ON THE EVALUATION
OF AVERAGE VALUES OF OBSERVABLES

This result  is to be expected on the
basis of the following considerations.
Since 〈 p

x
〉 , corresponding to an

average value of a physical observa-
ble, is a real value, the integral
〈ψ

k
 p

x
ψ

k
〉   must be zero, because of

the presence of the imaginary
constant. Moreover, simple conside-
rations on the symmetry properties
of the integrand lead to the same
result.

 〈p
x

2〉  = 〈ψ
k
 (-h2d2/dx2ψ

k
〉  =

=(-2h2/a)ò -k2sin2(kx)dx =

=(2h2k/a) ò sin2tdt =
= (2h2k/a)[t/2 - sin(2t)/4]

0
 =

= (2h2k/a)ka/2 = (nhπ/a)2.
It is possible to obtain the same result
for 〈p

x
2〉  operating with p

x
2 on the

wavefunction and identifying the
eigenvalue with the average value,
being the wavefunction eigenfunction
of this operator.
Alternatively, remembering that in this
case  〈p

x
2〉  = 2mE, given the energy of

the particle n2h2/8ma2, 〈p
x
2〉  = (nhπ/a)2.

As further exercise, it is possible to
verify that the Heisenberg principle
holds, that is  ∆x∆p

x
 ≥ 〈 C〉 /2,  where

∆x = (〈x2〉 - 〈x〉2)1/2 , ∆p
x
 = (〈p

x
2〉 - 〈p

x
〉2)1/2

and  〈 C〉 = 〈ψ i[x,p
x
]ψ〉 = h.

Now,
∆x = { a2(1/3 - 1/2n2π2) - a2/4} 1/2  =
= a(1/12 - 1/2n2π2)1/2.   ∆p

x  
= nhπ/a.

∆x∆p
x 
= nhπ(1/12 - 1/2n2π2)1/2   =

=(h/2)(n2π2/3 - 2)1/2

to be compared with 〈 C〉 = h /2.
For n = 1, ∆x∆p

x 
= (h/2)(π2/3 - 2)1/2

which is slightly larger than h/2, in
accord with the Heisenberg principle.
The values of ∆x∆p

x  
increase appro-

ximately linearly with n.
As a second example, we consider the
wavefunctions of the hydrogen atom
and calculate, as above, the values
of 〈x〉 , 〈x2〉 , 〈p

x
〉  and  〈p

x
2〉 .

Let us consider the 1s wavefunction.

1s = (πa
0

3)-1/2exp(-r/a
0
)    where a

0
 is

the Bohr radius =h 2/m
e
e2.

〈x〉  = 〈1s x 1s〉 = ∫∫∫(πa
0
3)-1/2exp (-r/a

0
) x

(πa
0

3)-1/2exp(-r/a
0
)r2drsinθdθdϕ =

= (πa
0

3)-1∫∫∫exp(-2r/a
0
)(rsinθ cosϕ)

r2 drsinθdθdϕ.
Since the integral on the ϕ coordina-
te is    cosϕdϕ = 0, 〈x〉  = 0.
Also in  this case  simple considera-
tions about the symmetry properties
of the integrand lead to a null value
of the integral.
〈x2〉  = 〈1s x2 1s〉  =
=∫∫∫(πa

0
3)-1/2exp(-r/a

0
)x2(πa

0
3)-1/2

exp(-r/a
0
)r2drsinθdθdϕ =

= (πa
0

3)-1∫∫∫ exp(-2r/a
0
)(rsinθcosϕ)2 r2

drsinθdθdϕ =(πa
0

3)-1(ò exp(-2r/a
0
)r4

dr ò sin3θdθ ò cos2ϕdϕ).

We have to solve separately the
three integrals on the
coordinates r, θ and ϕ .

ò sin3θdθ = [-cosθ(sin2 θ + 2)/3]
 
  =

= 4/3.                                                 [3]

ò cos2ϕdϕ = [ϕ /2 + (sin2ϕ)/4 ]
     

=
=π.                                                     [3]
Making the change of variable 2r/a

0
 = t,

ò  exp(-2r/a
0
)r4dr =

= (a
0
/2)5ò exp(-t)t4dt. ò exp(-t)t4dt=

=[-exp(-t)t4]
0

∞
 + 4ò exp(-t)t3dt =

= 4([-exp(-t)t3]
0

∞
 + 3ò exp(-t)t2dt) =

=12([-exp(-t)t2]
0

∞
 + 2ò exp(-t)tdt) =

= 24[-exp(-t)]
0

∞
 = 24.

Finally, 〈x2〉 = (πa
0
3)-1(a

0
/2)5 24 (4/3)π = a

0
2.

〈p
x
〉  = (πa

0
3)-1∫∫∫exp(-r/a

0
)(-ih∂/∂x)

exp(-r/a
0
)r2drsinθdθdϕ =

= (-ih)(πa
0

3)-1∫∫∫exp(-r/a
0
)(∂/∂x)

(exp(-(x2 + y2+z2)1/2/a
0
))r2drsinθdθdϕ =

=(-ih)(πa
0

3)-1∫∫∫exp(-r/a
0
)(-exp(-(x2+ y2+

+ z2)1/2/a
0
))(1/a

0
)(1/2(x2 + y2 + z2)1/2)2x

r2drsinθdθdϕ = (-ih)(πa
0

4)-1∫∫∫exp(-2r/
a

0
)(1/r)rsinθcosϕ r2drsinθdθdϕ.

Since the integral on the ϕ coordina-

te is ò cosϕdϕ = 0, 〈p
x
〉  = 0.

Also  in this case  simple considera-
tions about the symmetry properties
of the integrand give the result above.
〈p

x
2〉  = (-h2)(πa

0
3)-1∫∫∫exp(-r/a

0
)(∂2/

∂ x 2 ) ( e x p ( - ( x 2 + y 2 + z 2 ) 1 / 2 /

/
/

/

ka

0

a

0

ka

0

a

0

a

0
/

/

/

/

/

/
/

a

0

2π

0
ka

0

/

/

/
/

/
/

/
/

/

π

0

π

0

2π

0

2π

0

π

0

∞

0

∞

0 ∞

0

∞

0 ∞

0

∞

0

∞

0

/

/

/

π

0

/

/

ka

0

nπ

ka

/

/

ò2π

0
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a
0
))r2drsinθdθdϕ =

=(-h2)(πa
0

3)-1∫∫∫exp(-r/a
0
)(∂/∂x)(-exp(-r/

a
0
)(x/ra

0
))r2drsinθdθdϕ =

=h2(πa
0

4)-1∫∫∫exp(-r/a
0
){ (-exp(-r/a

0
))(1/

a
0
)(x/r)(x/r) + exp(-r/a

0
)(r - x2/r)/

r2} r2drsinθdθdϕ =h2(πa
0

4)-1∫∫∫exp(-2r/
a

0
)(-x2/a

0
r2 + 1/r - x2/r3)r2drsinθdθdϕ =

=h2(πa
0

4)-1{ (-1/a
0
)ò exp(-2r/a

0
)r2dr

ò sin3θdθò cos2ϕdϕ  +

+ ò exp(-2r/a
0
)rdrò sinθdθò dϕ +

       -ò exp(-2r/a
0
)rdr

ò sin3θdθ ò cos2ϕdϕ} .

As shown above in the case of the
calculation of 〈x2〉 ,
òexp(-2r/a

0
)r2dr =(a

0
/2)3ò exp(-t)t2dt=

= 2(a
0
/2)3  = a

0
3/4.

     ò exp(-2r/a
0
)rdr = (a

0
/2)2.

ò sin3θdθ = 4/3.ò cos2ϕdϕ  = π.

Moreover, òdϕ=2π andò sinθdθ = 2.
Finally, we obtain
〈p

x
〉  =h2(πa

0
4)-1{ (-1/a

0
)(a

0
3/4)(4π/3) +

+(a
0

2/4)4π - (a
0

2/4)(4π/3)}  =
= (h2/a

0
4)(-a

0
2/3 + a

0
2 - a

0
2/3) = h2/3a

0
2 .

As in the previous example, the
Heisenberg principle can be easily
verified.

∆x∆p
x 

= (a
0

2h2/3a
0

2)1/2 = h/√3 to be
compared with 〈 C〉 /2 = h/2; since
√3 is smaller than 2, it is verified that
∆x∆p

x 
>

  
〈 C〉 /2.

Analogous results can be obtained
for the other wavefunctions of the
hydrogen atom, keeping in mind that,
when functions with quantum number
l>0  are considered, different values
for x, y and z coordinates can be
obtained. The results for the 1s, 2s,
2p, 3s, 3p and 3d

0
 functions are

reported in the Table below.
The 〈z2〉 /〈x2〉  ratio, r, depends on the
quantum numbers  l and  m ,
irrespective of the value of the
principal quantic number ( r = 1 for l =
0;  r = 3 for l = 1 and m = 0; r = 1/2 for
l =1,  m = 1; r = 11/5 for l = 2, m = 0).
This derives from the fact that the
presence of the functions x, y or z in
the quantum integrals affects only
the result on the angular part. The
same ratio holds for the 〈p

z
2〉 /〈p

x
2〉  term.

 Finally, a further exercise can be made
on the calculation of the average
values of potential and kinetic
energies for the hydrogen wavefun-
ctions so as to verify the virial
theorem.
In the case of the 1s wavefunction,
〈V〉  = 〈1s -e2 /r 1s〉  = -(πa

0
3)-1∫∫∫exp

(-2r/a
0
)(e2/r)r2drsinθdθdϕ =

= (-e2/πa
0

3)òexp(-2r/a
0
)rdrò sinθdθ

òdϕ .
Since the integral on the radial part is
(a

0
/2)2 , as we have already seen, and

the integral on the angular part is 4π,
〈V〉  = (-e2/πa

0
3)(a

0
/2)24π = -e2/a

0
.

〈T〉  =  (〈p
x

2〉  + 〈p
y
2〉  + 〈p

z
2〉 )/2m = 3〈p

x
2〉

/2m = 3h2/6a
0

2m = e2/2a
0 
.

Hence it is verified that  〈T〉  = - 〈V〉 /2.
The extension to the other
wavefunctions is straightforward.
From the table above, one obtains the
value of 〈T〉  and, considering that
E = -e2/(2n2a

0
), it is immediate to verify

that E = - 〈T〉  , as stated from the virial
theorem.
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         〈x2〉=〈y2〉      〈z2〉        〈p
x

2〉=〈p
y
2〉       〈p

z
2〉        ∆x∆p

x 
=

  
∆y∆p

y                 
∆z∆p

z

1s           1              1              1/3               1/3          2/√3 ≈ 1.15                 2/√3

2s         14            14             1/12            1/12      (14/3)1/2 ≈ 2.16             (14/3)1/2

2p
0 
         6            18             1/20            3/20        (6/5)1/2 ≈ 1.10             3(6/5)1/2

2p±1
      12              6             1/10            1/20        4(3/10)1/2 ≈ 2.19           (6/5)1/2

3s          69            69             1/27            1/27     (2/3)231/2 ≈ 3.20          (2/3)231/2

3p
0  

       36          108             1/45            1/15           4/√5  ≈ 1.79            12/√5

3p±1
       72            36             2/45            1/45           8/√5  ≈ 3.58              4/√5

3d
0
         30            66           5/189        11/189     (10/3)(2/7)1/2 ≈ 1.78   (22/3)(2/7)1/2

The values are in units a
0

2  for 〈k2〉 , h2/a
0

2  for 〈p
k

2〉 , and h/2 for ∆k∆p
k 
 (k=x,y,z).

In all cases, 〈k〉  = 〈p
k
〉  =  0.
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