Microscopia elettronica oltre la nanoscala come vedere gli atomi (e cosa c'è oltre)

Antonio.Mio@cnr.it

Scuola Ulderico Segre Lo sviluppo delle nanoscienze e la didattica universitaria di base

Consiglio Nazionale delle Ricerche

1Å

Mo

Outline

- Strumenti (TEM convenzionale, probe-corrected)
- Spettroscopia EDS
- Spettroscopia EELS

Consiglio Nazionale delle Ricerche

Conventional TEMs

JEOL JEM 2010F Ultra High Resolution microscope

- 200 KeV FEG emitter
- GIF 2001 with advanced STEM EFTEM/ EELS spectrum-imaging package
- BF/HAADF STEM detectors

JEOL JEM 2010 High Resolution Microscope

- 200 KeV LaB6 emitter
- LN₂ EDS Oxford x-sight 6498 res 136eV

TEM

High-Angle Annular Dark Field (HAADF)

JEOL ARM 200F Specification Cold-FEG energy spread 0.3 eV FWHM at 200 kV

electron acceleration voltage range

electron acceleration voltage range between 40 and 200 KeV Cs corrector on the probe

CEOS CESCOR hexapole, resolution of 68 picometers EDX detector 100mm², 0.98sr

Gatan GIF Quantum ER fully loaded for EFTEM and Fast EELS and Fast EDX able to acquire up to 1500 /s

STEM: Working principle

Tecniche spettroscopiche

Energy Dispersive X-ray Analysis (EDS o EDX)

Consiglio Nazionale delle Ricerche

STEM-EDS: Working principle

STEM-EDS: Working principle

Multishell GaAs/AlGaAs NWs: polarity driven nanofacets evolution

Scuderi, M et al. (2016). III-V core-multishell nanowire heterostructures: nanofacets evolution, shell thickness change and compositional segregation. In *NanoSEA* 2016

Al segregation dependence from nanofaceting

Courtesy of Mario Scuderi and Giuseppe Nicotra

Tecniche spettroscopiche

Electron Energy Loss Spectroscopy (EELS)

Consiglio Nazionale delle Ricerche

STEM-EELS: Working principle

Alcuni approfondimenti ed esempi applicativi

- Carter, C. B.; Williams, D. B. Transmission electron microscopy: a textbook for materials science; Springer: New York, 1996.
- Ercius et al., Adv. Mater. 2015, 27, 5638–5663
- Mio et al., J. Appl. Phys. 113, 044315 (2013);
- Book: Characterization of Semiconductor Heterostructures and Nanostructures (Second Edition), Elsevier, in Cap. 10 Transmission Electron Microscopy Techniques for Imaging and Compositional Evaluation in Semiconductor Heterostructures by Lazzarini et al.
- Marzegalli et al, PHYSICAL REVIEW B 88, 165418 (2013)
- Mio et al., 2017 Nanotechnology 28 065706
- M. Zimbone et al., Cryst. Growth Des. 2020, 20, 5, 3104–3111
- Vanni et al., Chem. Mater. 2019, 31, 5075–5080
- Nicotra et al., ACS Nano 2013, 7, 4, 3045–3052

Per informazioni/commenti e materiale supplementare:

