Claudio Sangregorio

Dall'atomo ai materiali massivi: proprietà fisiche e dimensioni

CNR - ICCOM Istituto di Chimica dei Composti OrganoMetallici

INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali

Laboratorio di Magnetismo Molecolare Dip. di Chimica, Università di Firenze

National Research Council of Italy

Nanoparticelle magnetiche

Paleomagnetismo

L. Néel Ann. Geophys. 1949

Ferritina

Ð

Batteri magnetotattici

Nanotecnologia

Nanomedicina

Image Credits | shutterstock.com/g/gorbovoi81

Nanocompositi smart

Hybrid Nanocomposites Fundamentals, Synthesis, and Applications Ed. K. Pal 2019 CRC Press

Ambiente

https://www.azonano.com/article.aspx?Articl eID=3178

Dispositivi elettronici

<u>https://news.cnrs.fr/articles/the-new-challenges-of-</u> <u>spintronics;</u> © C. PFEIDERER/TUM;

Perché i nanomateriali?

1

Research Council of Italy

1

lef:

Materiali magnetici e applicazioni

Į.

1956: 1° hard disk - IBM RAMAC

From https://www.which.co.uk/news/2021/03/5-problems-withelectric-car-charging-and-how-to-fix-them/

https://www.magforce.com/home/

Il ciclo di isteresi

Multidominio	Nanostrutture	Cluster
> 10 ⁻⁷ m	10 ⁻⁷ -10 ⁻⁹ m	10 ⁻⁹ m
Magnetic Field (T)		

ß

R

Il ciclo di isteresi nei materiali massivi

visualized by scanning hard X-ray microprobe Acta Materialia 2016, 106, 155

Į.

Il ciclo di isteresi

JAMM arch Council of Ital

Il ciclo di isteresi nelle nanoparticelle

L'inversione della magnetizzazione avviene atrvaerso la rotazione coerente di tutti gli psin della nanoparticella

 $\tau = \tau_0 \exp(\Delta E/kT)$

Barriera di energia $\Delta E = k_A V$

k_A= costante di anisotropia, V= volume della particella

Se ΔE è più piccolo di k_BT M è bloccata in uno dei due «pozzi»

$[Mn_{12}O_{12}(CH_{3}COO)_{16}(H_{2}O)_{4}].2CH_{3}COOH.4H_{2}O$

Į.

- Simmetria tetragonale
- Stato fondamentale
 - S= (8 x 2 4 x 3/2) = 10

Π

onal Research Council of Italy

Il ciclo di isteresi

urch Council of Ital

Il ciclo di isteresi nei SMM

H sopprime il rilassamento per tunneling

Į.

1≠0 M=S M=-S

Il tunneling è possibile per valori di campo H=nD/gµ_B

La transizione da bulk a nano

£

La terra di nessuno tra SMM e NP

Angewandte Minireviews

D. Gatteschi et al.

DOI: 10.1002/anie.201105428

I

Nanomagnetism

Exploring the No-Man's Land between Molecular Nanomagnets and Magnetic Nanoparticles

Dante Gatteschi,* Maria Fittipaldi, Claudio Sangregorio, and Lorenzo Sorace

NANOPARTICELLE MAGNETICHE: descritte da MODELLI CLASSICI

APPROCCIO TOP-DOWN

Parametri estratti dal bulk

NANOMAGNETI MOLECOLARI: descritti da

MODELLI QUANTISTICI

APPROCCIO BOTTOM-UP

Parametri dai singoli spin

magnete molecolare

Il ruolo della superficie

Al diminuire delle dimensioni delle nanoparticelle la percentuale di atomi sulla superficie aumenta fortemente

Į.

La rottura di simmetria alla superfice può causare variazioni nella struttura a bande, parametri reticolari o coordinazione (anisotropia di superficie, magnetizzazione di saturazione, anisotropia di scambio superficie/core)

Research Council of Italy

Il ruolo della superficie

- Charge transfer da Au ad S
- La banda d reca una vacanza che genera un momento magnetico

Forte anisotropia (non zero coercitività a temperatura ambiente)

Il ruolo della superficie

Adamantil-1-metil-5-(1,2ditiolan)pentanoato

V. Skumryev et al. Nature 423, 850, 2003

Cicli di isteesi a 4.2 K di NP $Co_{core}CoO_{shell}$ NPs di 4 nm in diverse matrici dopo procedure ZFC e FC in campo da 5 T.

Ð

Multifunzionalità Au@Fe₃O₄ nanostelle

F

F

Smart nanocarriers

Nuovi materiali – Exchange spring

Ð

National Research Council of Italy

Grazie per l'attenzione

Ð