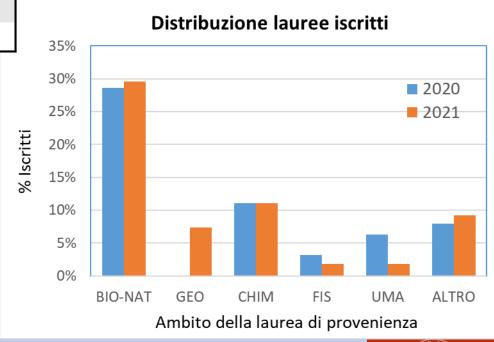
FONDAMENTI DI DIDATTICA DELLA CHIMICA


Corso a Libera scelta dall'a.a.2018-19 Chimica e Chimica industriale 6 CFU (36 ore)

DUE MODULI IN PARALLELO DI 18 ORE CIASCUNO

Prof. Sergio Zappoli, Dipartimento di Chimica Industriale «Toso-Montanari» Prof.ssa Margherita Venturi, Dipartimento di Chimica «G. Ciamician»

LM-DiCoSN: Distribuzione delle lauree di provenienza

	CANDIDATI		ISCRITTI	
AMBITI LAUREE	2020	2021	2020	2021
BIO-NAT	49%	46%	29%	30%
GEO	3%	11%	0%	7%
CHIM	21%	20%	11%	11%
FIS	3%	2%	3%	2%
UMA	10%	4%	6%	2%
ALTRO	14%	17%	8%	9%

LM-DiCoSN: piano formativo

PRIMO ANNO (64 CFU)

	Insegnamento	CFU
	Fondamenti e Didattica della Biologia	12
	Fondamenti e Didattica della Chimica	10
	Fondamenti e Didattica della Geologia	12
	Fondamenti e Didattica dell'Ecologia	6
	Psicologia sociale e dell'apprendimento	6
	Antropologia generale e delle Scienze	6
)	Teorie e modelli della mediazione didattica	6
	Storia delle idee scientifiche e pseudoscientifiche	6

LS: TECNICHE DI BASE NEL LABORATORIO CHIMICO 5+1 CFU 30 + 10 ore

SECONDO ANNO (56 CFU)

Curriculum 1:DIDATTICA DELLE SCIENZE DELLA NATURA (BIO-CHIM-GEO)

Curriculum 2:EDUCAZIONE E

COMUNICAZIONE DELLE SCIENZE

NEI MUSEI (PED-BIO-GEO)

Curriculum 3:DIDATTICA E SVILUPPO SOSTENIBILE (PED-CHIM)

Curriculum 4:DIDATTICA DELLA

COMUNICAZIONE SCIENTIFICA

(PED-M-STO)

Due corsi a Libera Scelta; Idoneità inglese B2; Altre attività

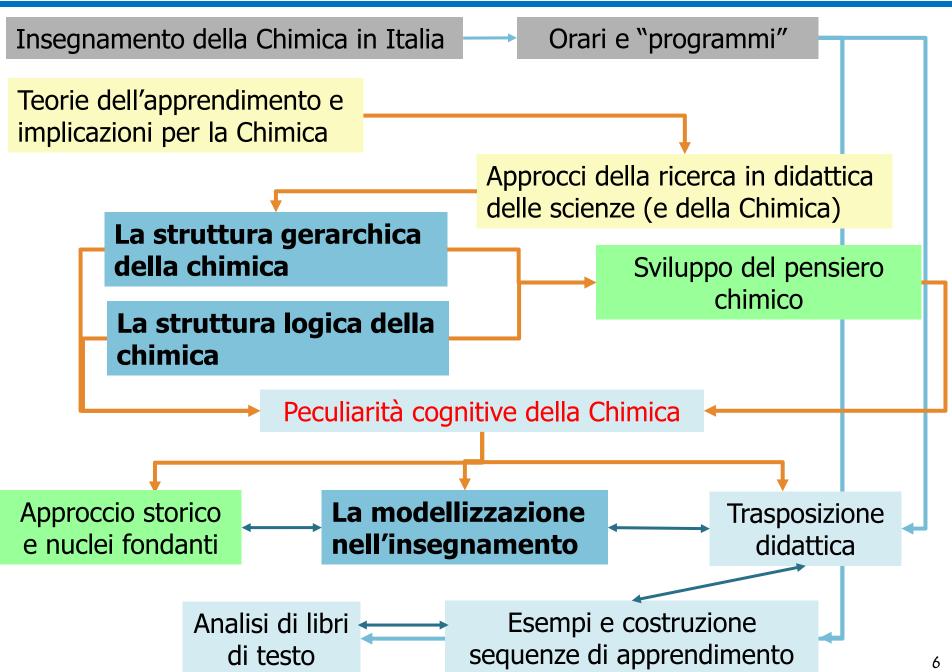
Tirocinio in preparazione della tesi - 17 CFU

SEMESTRE

FONDAMENTI E DIDATTICA DELLA CHIMICA

Corso fondamentale_DiCOSN 10 CFU (96 ore)

48 ore frontali e 48 ore esercitazioni


DUE MODULI IN PARALLELO DI 48 ORE CIASCUNO

Prof. Sergio Zappoli, Dipartimento di Chimica Industriale «Toso-Montanari» Prof.ssa Margherita Venturi, Dipartimento di Chimica «G. Ciamician»

Il quadro teorico - riferimenti

- 1. La constatazione dell'esistenza di stadi di sviluppo cognitivo (Piaget)
- La ricaduta della visione piagetiana sulla «possibilità» cognitiva di apprendere alcuni contenuti della chimica (Herron)
- 3. L'individuazione di una struttura logica dello sviluppo storico della chimica (Hansen)
- 4. L'individuazione di una struttura gerarchica dei concetti di base chimici (Hansen)
- L'individuazione di tre registri concettuali in chimica (Johnson)
- 6. La centralità del modello particellare (Roletto, Regis)
- 7. La trasposizione didattica (Roletto, Ghibaudi)

Mappa dell'insegnamento

ESAME

Selezione di 25 articoli di didattica della chimica, tra cui, ad esempio

- Libby: Piaget and Organic Chemistry_Teaching Introductory Organic Chemistry
- Roletto et al.: Modellizzazione-Il modello particellare parte 2
- Sutcliffe: The Development of the Idea of a Chemical Bond
- Olmi: Un solitario con le "tessere" di Mendeleev. Una esperienza didattica di (ri) costruzione della tavola periodica mendeleviana
- Scerri: Have Orbitals Really Been Observed?
- Van Driel et al.: Students corpuscular conceptions and chemical equilibrium
- Scerri: Some Aspects of the Metaphysics of Chemistry and the Nature of the Elements
- Ambrogi et al.: Make sense of nanochemistry and nanotechnology
- · Venturi et al.: How can RRI become a permanent aspect of science teaching
- Caronia et al. "Miscele". Proposta del Gruppo di lavoro Scuola Segre
- Fini et al. "Sostanze e trasformazioni". Proposta del Gruppo di lavoro Scuola Segre
- Tortorella et al.: Chemistry Beyond the Book: Open Learning and Activities in Non-Formal Environments to Inspire Passion and Curiosity

Per la stesura dell'elaborato selezionare uno o più articoli fra quelli messi a disposizione nell'apposita sezione della piattaforma Virtuale ("Materiale per esame")

Basandosi sulla selezione fatta, produrre un breve elaborato (4-5 pagine massimo, corpo 11, interlinea 1) cercando di rispondere a queste domande guida, argomentando sinteticamente le risposte date

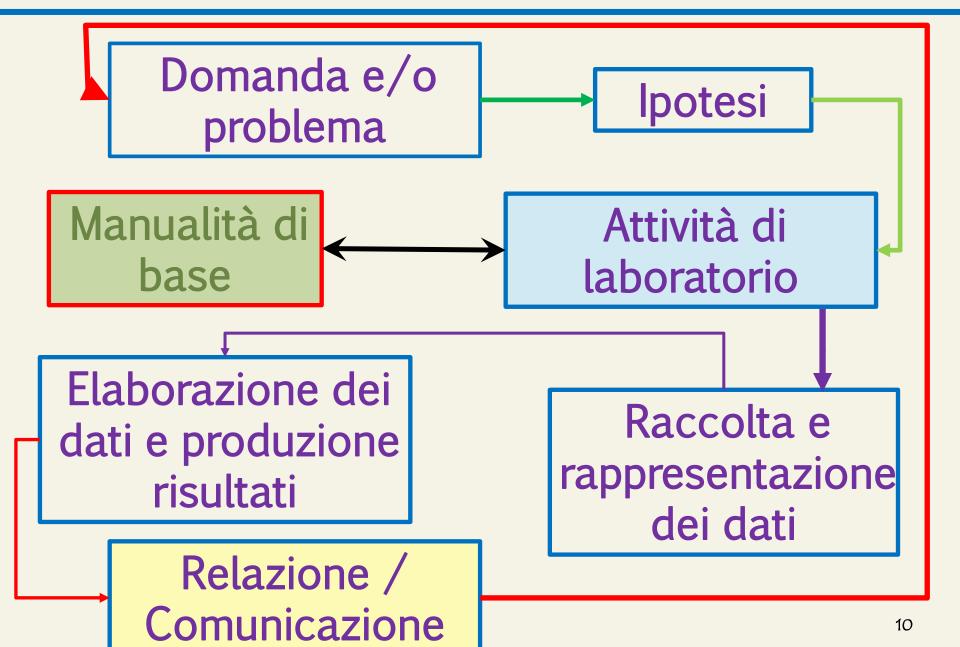
- Quale problema viene affrontato, evidenziato, o discusso nell'articolo (difficoltà di apprendimento riconosciute, ostacoli cognitivi, inquadramento storico, aspetti epistemologici ecc..)?
- Quale o quali argomenti disciplinari sono presi in considerazione nell'articolo (trasformazioni chimiche, acidi e basi, sintesi organica, modelli atomici, ecc..)?
- In quale quadro teorico di riferimento si inquadra l'articolo (considerare non solo i principali temi della ricerca in didattica della chimica/scienze, ma anche i modelli di apprendimento, o le tecniche/tecnologie di apprendimento)?
- Qual è la natura del lavoro riportato nell'articolo (risultato di un lavoro sperimentale svolto ad esempio in una o più classi; riflessione teorica, storica/epistemologica/pedagogica, sulle metodologie didattiche per la chimica; proposta di apprendimento, ad esempio una sequenza o ciclo di apprendimento)?
- Le referenze bibliografiche sono di aiuto per connettere o meglio spiegare i vari aspetti affrontati nell'articolo (limitarsi a quelle più rilevanti e, ovviamente, facilmente accessibili)?

Concludere l'elaborato esprimendo una valutazione personale sulla valenza dell'articolo, considerandone le implicazioni e ricadute nella pratica dell'insegnamento della chimica nel contesto di una classe di scuola superiore di secondo grado.

Laboratorio Integrato di Didattica delle Scienze della Natura

Corso Fondamentale di curriculo

18 CFU


24 ore Frontali + 24 ore Laboratorio

per BIO, CHIM e GEO

144 ore totali

Prof. Sergio Zappoli, Dipartimento di Chimica Industriale «Toso-Montanari» Prof.ssa Dora Melucci, Dipartimento di Chimica «G. Ciamician»

Mappa dell'insegnamento

Elaborazione dei dati e produzione risultati

> OBIETTIVO

Introdurre in tutte le Scuole Secondarie di Secondo Grado la cultura della qualità del dato scientifico, con particolare riferimento alla incertezza associata a qualunque misura sperimentale di variabili naturali. Lo studente apprende che ogni risultato sperimentale deve essere presentato come intervallo di confidenza: $x \pm \Delta x$, con livello di confidenza P

> CONTENUTI

Vengono fornite basi teoriche e pratiche della statistica univariata per:

- √ il calcolo dell'intervallo di confidenza
- ✓ Il confronto tra risultato sperimentale e dato atteso (test di significatività)
- ✓ Il calcolo dell'errore totale, statistico e tecnico (**propagazione degli errori**)
- Lo studente impara a **progettare esperimenti** ed elaborare i dati utilizzando il software Microsoft Excel, ad un livello proponibile agli alunni.
- ➤ Il **software Excel** è scelto in quanto risulta noto alla maggioranza degli studenti che hanno partecipato al Piano Lauree Scientifiche, nel quale la Docente propone esercitazioni di elaborazione-dati raccolti dagli alunni stessi in semplici esperienze (UV-VIS e HPLC di droghe) che essi conducono in prima persona